3/H-64 (iii) (Syllabus-2015)

2019

(October)

BIOCHEMISTRY

(Honours)

(BCHEM-301)

(Proteins and Enzymes)

Marks: 56

Time: 3 hours

The figures in the margin indicate full marks for the questions

Answer any four questions

- are purified using chromatographic techniques, which **Proteins** 1. (a) separate according to difference in specific properties. Mention the protein properties used during purification and discuss two techniques employed in the purification process.
 - Define enzyme activity and specific enzyme activity. (b)
 - Discuss protein sequencing using Sanger's reagent and dansyl chloride. 2. (a) What are the disadvantages of these 6+2=8methods?

(Turn Over)

10

4

(b) A biochemist purifies a new enzyme, generating the purification table below:

		ante petom :
Procedure	Total protein (mg)	Activity (units)
1. Crude extract	20000	4000000
2. Precipitation (Salt)	5000	3000000
3. Precipitation (pH)	4000	1000000
4. Ion-exchange chromatography 5. Affinity	200	800000
chromatography 6. Size-exclusion	50	750000
chromatography	45	675000

From the information given in the table, calculate the specific activity of the enzyme after each purification procedure.

3. (a) Name the classes of enzymes that catalyse the following reactions: 1×4=4

(i)
$$A + B + ATP \rightarrow A - B + ADP + P$$

(ii)
$$A - B + C \rightarrow A + B - C$$

(iii)
$$A-B+H_2O \to A-H+B-OH$$

(iv)
$$A_{\text{red}} + B_{\text{ox}} \rightarrow A_{\text{ox}} + B_{\text{red}}$$

yme g the	
ţ 1	the

- (c) Explain the importance of the binding energy, $\Delta G_{\rm B}$ in catalysis.
- (d) When the active site occupies a small portion of the enzyme, why is enzyme large protein?
- 4. (a) Explain the pH and temperature 4+4=8
 - (b) What is the catalytic triad of chymotrypsin?
 - (c) What are the roles of those amino acid residues in the active site which do not have binding or catalytic function?
- 5. (a) Discuss Michaelis constant, $K_{\rm M}$ as an index of the affinity of an enzyme for its substrate.
 - (b) Under physiological conditions, enzymes usually do not operate at saturating substrate concentration. For these situations, explain the best way to compare the catalytic efficiency.

20D/85

(Continued)

20D/85

(Turn Over)

3

3

3

5

5

(c) Estimate the V_{max} and K_{M} by inspecting the data given below:

, [S]M	U ₀ (μM/min)	
2·5×10 ⁻⁶	28	
4·0×10 ^{−6}	40	
1×10 ⁻⁵	70	
2×10 ⁻⁵	95	
4×10 ⁻⁵	112	
1×10 ⁻⁵	128	
2×10 ⁻⁴	139	
1×10 ⁻²	140	

- 6. (a) What is enzyme inhibition? Derive the rate equation for an enzyme subjected to competitive inhibition. 2+9=11
 - (b) Explain why non-competitive inhibition is the most important type of inhibition for the regulation of the cell metabolism.
- 7. Explain any one of the following with respect to enzyme regulation:
 - (a) Proteolytic cleavage
 - (b) Covalent modification
- 8. What does protein turnover mean? How can a cell distinguish proteins that are meant for degradation? 2+5=7

* * *

3

7