1/H-64 (i) (Syllabus-2015)

2022

(November)

BIO-CHEMISTRY

(Honours)

(BCHEM-101)

(Biomolecules and Biophysical Techniques)

Marks: 56

Time: 3 hours

The figures in the margin indicate full marks for the questions

Answer four questions, taking at least one from each Part

PART-A

1. (a) Draw the structure of water molecule. 2 Explain why water is an effective (b) solvent. Why does the pH scale range from 0 to (c) 14 at 25 °C? 4 Calculate the concentration of H+ in a (d) solution of 0.1 M NaOH. 3 Which of the aqueous solutions has (e) the lowest pH-0.1 M HCl; 0.1 M acetic acid $(pK_a = 4.86)$; 0.1 M formic acid 3 $(pK_n = 3.75)$?

- How do epimers differ from anomers?
 - Draw the Haworth perspective formulas of the α - and β -form of D-glucose. What features distinguish the two forms? 3+1=4
 - How are glycosidic bonds formed? Write the structure of sucrose. Why is sucrose called a non-reducing sugar?
- Explain the difference between a hemiacetal and a glycoside.

or carries

- How does 'chain' form of glucopyranose differ from its 'boat' form? 3
- The structure of the amino acid isoleucine is ______

$$H_3\dot{N}$$
—C—H
H—C—CH₃
CH₂
CH₂

- (i) How many chiral centers does it have?
- (ii) How many possible optical isomers does isoleucine have? 1+2=3

(Continued)

(d)	How many types of amino acids can be								
	classific	ed on	d on the basis			of polarity and			
	charge	(at pl	1 7·0)	of	their	R-group?			
	Name 1						2=3		

- How are peptide bonds formed? What properties do peptide bonds have? 1+2=3
- 4. (a) How down you define the primary, moits secondary, stertiary and quaternary 1.-5+1 structures of proteins?
 - Name the two most common secondary structures.
 - Define the following: 11/4+11/4+2+2=7
 - Protein motif
 - biomolecute on nem est a rou-(ii) Supersecondary structures
 - (iii) Fibrous proteins
 - (iv) Globular proteins
- What are fatty acids? How are they classified? 2+ 2+3=5
 - (b) Draw the chemical structure and name the following abbreviations with
 - formed with molecular mages () 16:10; () 16:10; ()
 - (ii) $16:1^{\circ}(\Delta^9)$ where restricts
 - What is Chargaffirule?

D23/45

٤

(Turn Over)

3

5

: · · · ·	$\{u\}_{v\in V}$	What is Z-DNA? How is it different from B-DNA? Or Why is RNA not a stable molecule compared to DNA?	3=4		(d)	An enzyme has sedimentation coefficient of 3.5 S. When substrate molecule is found into the active site of the enzyme, the sedimentation coefficient decreases to 3.0 S. Explain this change.	3
		Or What is T_m ? Describe the factors that influence T_m during denaturation	₹.	7.	(a)	What is the principle behind the separation of protein of different masses in gel filtration chromatography?	6
		of DNA.	3=4		(b)	State the Beer-Lambert law.	3
			1		(c)	Define molar absorption coefficient.	2
6.	(a)	PART—B What physical characteristics of a biomolecule influences its movement in an electrophoresis matrix?	5		(đ)	The absorbance A of a $5 \times 10^{-4} M$ solution of the amino acid tyrosine at wavelength of 280 nm is 0.75. The path length of the cuvette is 1 cm. What is the molar absorption coefficient ϵ ?	3
	(b)	A protein has a molecular mass of	i	8.	(a)	What are isotopes and radioisotopes?	3
	• •	400 kDa when measured by gel filtration. When subjected to SDS-PAGE, the protein gives three bands with molecular mass of 180, 160 and			(b)	State the differences between $\alpha(alpha)$ and $\beta(beta)$ rays.	3
			25		(c)	What are the units of radioactivity?	3
		60 kDa. When electrophoresis is carried out in presence of SDS and			(d)	Define the term 'half-life'.	2
		dithiothreitol, three bands are again formed with molecular masses of 160, 90 and 60 kDa. Determine the subunit composition of the protein.	again 160,		(e)	C ¹⁴ has a half-life of 5700 years. Calculate the fraction of the C ¹⁴ atmos that decays per year.	3
	(c)	Define sedimentation coefficient.	3			***	

3