3/EH-29 (iii) (Syllabus-2015)

2022

(November)

MATHEMATICS

(Elective/Honours)

(GHS-31)

(Algebra—II and Calculus—II)

Marks: 75

Time: 3 hours

The figures in the margin indicate full marks for the questions

Answer five questions, taking one from each Unit

Unit-I

1. (a) Prove that the set C of all complex numbers z=a+ib; $a,b\in\mathbb{R}$ forms an infinite Abelian group with respect to addition of complex numbers.

5

- (b) Prove that the additive group ({0, 1, 2, 3, 4},+5) is cyclic. Also, find its generators. 4+1=5
- (c) Let a be an element of a group G. Show that the set $H = \{a^n : n \in I\}$ of all integral powers of a is a subgroup of G.
- 2. (a) Show that every group of prime order p is cyclic. Is it Abelian? 4+1=5
 - (b) State and prove Lagrange's theorem on the order of a finite group. 1+4=5
 - (c) Let H be a subgroup of G and $T = \{x : x \in G \text{ and } xH = Hx\}$. Prove that T is a subgroup of G.

UNIT-II

3. (a) Solve the equation

$$x^4 + 2x^3 - 16x^2 - 22x + 7 = 0$$

given that one of its roots is $2+\sqrt{3}$.

- (b) Solve the equation $x^3 + 63x 316 = 0$ by Cardan's method.
- (c) Solve the equation $x^3 7x^2 + 36 = 0$ given that one root is double of another.
- **4.** (a) Apply Descarte's rule of signs to discuss the nature of the roots of the equation $x^4 + 15x^2 + 7x 11 = 0$.
 - (b) Find the equation whose roots are the roots of $3x^3 2x^2 + x 9 = 0$ each diminished by 5.
 - (c) Let α , β , γ and δ be the roots of the equation

$$x^4 + px^3 + qx^2 + rx + s = 0$$

Find the values of the following symmetric functions: 1+3+3=7

- (i) $\sum \alpha$
- (ii) $\sum \alpha^2 \beta$
- (iii) $\sum \alpha^2 \beta \gamma$

6

UNIT-III

- 5. (a) Prove that if a sequence converges, then its limit is unique.
 - (b) Prove that the sequence {(-1)ⁿ} is not a Cauchy sequence.
 - (c) Prove that the sequence $\left\{\frac{4n+3}{n+2}\right\}$ is bounded and monotonically increasing.
 - (d) Show that the sequence $1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots$ is convergent.
- 6. (a) Test the convergence of any two of the following series: 3×2=6

(i)
$$\sum_{n=2}^{\infty} \frac{1}{\sqrt{n(n-1)}}$$

(ii)
$$\sum_{n=2}^{\infty} \left(\frac{1}{\sqrt{n}} + \frac{1}{\sqrt{n-1}} \right)$$

(iii)
$$\sum_{n=2}^{\infty} \frac{1}{\log n}$$

(b) What is an alternating series? State Leibnitz's test for the convergence of an alternating series and hence show that

$$1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots$$

converge.

1+2+3=6

(c) Define radius of convergence of a series. Find the interval of convergence of the series $1+x+2! x^2+3! x^3+\cdots$.

1+2=3

UNIT--IV

7. (a) State and prove Rolle's theorem. Also, give its geometrical interpretation.

1+3+2=6

- (b) Find the maximum value of $\left(\frac{1}{x}\right)^x$.
- (c) Show that the radius of curvature at $\theta = \frac{\pi}{4}$ on the curve $x = a \cos^3 \theta$; $y = a \sin^3 \theta$ is $\frac{3a}{2}$.

D23/106

(Continued)

4

D23/106

(Turn Over)

- 8. (a) Find the horizontal and vertical asymptotes, (if any) of the curve $y^2(x^2-a^2)=x$.
 - (b) For the function

$$f(x, y) = \frac{x^2y^2}{x^2y^2 + (x - y)^2},$$

show that

$$\operatorname{Lt}_{x\to 0} \operatorname{Lt}_{y\to 0} f(x, y) = \operatorname{Lt}_{y\to 0} \operatorname{Lt}_{x\to 0} f(x, y)$$

but $\underset{y\to 0}{\text{Lt}} f(x, y)$ does not exist.

(c) If $u = \sin^{-1} \frac{x^2 + y^2}{x + y}$, then show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \tan u$.

Unit-V

- 9. (a) State and prove the fundamental theorem of integral calculus. 1+5=6
 - (b) Expand $f(x) = \log(1+x)$ in a finite series in powers of x with remainder in Lagrange's form.
 - (c) Apply the method of double integration to find the area of a quadrant of the ellipse $9x^2 + 16y^2 = 144$.

- 10. (a) Find the length of the arc of the parabola $y^2 = 4ax$ intercepted between the vertex and an extremity of the latus rectum.
 - (b) Find the volume of the solid generated by revolution of the circle $x^2 + y^2 = a^2$ about x-axis.

5

5

(c) Evaluate

5

$$\int_0^3 \int_1^{\sqrt{4-y}} (x+y) dx dy$$

by changing the order of integration.

**

5

4