3/EH-24 (iii) (Syllabus-2020)

2022

(November)

PHYSICS

(Elective/Honours)

[PHY 03 (T)]

(Thermal Physics, Optics)

Marks: 56

Time: 3 hours

The figures in the margin indicate full marks for the questions

Answer any eight questions

- 1. (a) What are the main postulates/assumptions of the kinetic theory of gases?

 Which of these assumptions were modified in the van der Waals equation?

 2½+1=3½
 - (b) 1 mole of a gas is kept in a container of volume 0.5 m³ at 0 °C. Calculate the pressure that will be exerted on the

walls of the container assuming that the gas obeys—

- (i) the ideal gas equation;
- (ii) van der Waals equation.

Given

 $R = 8.3 \text{ J mol}^{-1} \text{ K}^{-1}, \ a = 0.4 \text{ N m}^4 \text{ mol}^{-1}$ and $b = 50 \times 10^{-6} \text{ m}^3 \text{ mol}^{-1}$ $1\frac{1}{2}+2=3\frac{1}{2}$

(a) State the law of equipartition of energy.
 Use the law to derive the ratio of specific heats γ for diatomic gases.

1+21/2=31/2

- (b) What is meant by mean free path of gas molecules? Derive the expression for Clausius' mean free path. 1+2½=3½
- 3. (a) Derive an expression for the coefficient of thermal conductivity of a gas in terms of the r.m.s. velocity of the gas molecules.
 - (b) What are indicator diagrams? What physical quantity does the area under a P-V diagram represent? 1+1=2
 - (c) State Carnot's theorem.

4. (a) Describe the absolute zero temperature in the thermodynamic scale of temperature. Why is absolute zero not attainable?

3+1=4

- (b) How is cooling achieved in a gaseous system by using adiabatic expansion?
- 5. (a) State and derive the Stefan-Boltzmann law. 1+4=5
 - (b) Derive the expression for Rayleigh-Jeans law starting from the Planck's law formula.
- 6. (a) Using the Fermat's principle of extremum path, derive the laws of reflection at a plane boundary.
 - (b) Show that the distance between the two principal points of a lens system is equal to the distance between its two nodal points.
- 7. (a) Derive the lens maker's formula for a thin lens using the matrix method.
 - (b) What is chromatic aberration?

 Distinguish between axial and lateral chromatic aberration.

 1+2=3

D23/99

(Continued)

D23/99

(Turn Over)

2

3

4

- 8. Give the construction and working principle of a Huygen's eyepiece with the help of a neat diagram. Derive the expression for the equivalent focal length. Give any two demerits of Huygen's eyepiece. 3+2+2=7
- **9.** (a) Write down the important conditions for obtaining sustained interference pattern.
 - (b) Show that the fringe at the apex of a wedge-shaped film is dark.

2

2

3

2

2

- (c) With the help of a neat diagram, describe the construction of a Michelson interferometer.
- 10. (a) Distinguish between the Fresnel diffraction and the Fraunhofer diffraction.
 - (b) What are Fresnel's half-period zones?

 Derive the expression for the radius of the nth half-period zone.

 1+2=3
 - (c) How is rectilinear propagation of light explained in view of the phenomenon of diffraction?
- 11. (a) What is circularly polarized light?

 Describe a method for the production of circularly polarized light.

 1+3=4

- (b) What is a half-wave plate? Calculate the thickness of a half-wave plate of quartz for a wavelength of light of 4000 Å. Take the value of the refractive indices as 1.553 and 1.554 for the extraordinary and the ordinary rays respectively.
- 12. (a) Describe the construction and working of a He-Ne laser.
 - (b) What is an optical fibre? Describe the basic principle behind its working. 1+2=3

* * *