5/H-23 (v) (a) (Syllabus-2015)

2022

(November)

CHEMISTRY

(Honours)

(Chem-H-501)

(Part—A: Inorganic Chemistry—I)

Marks: 38

Time: 2 hours

The figures in the margin indicate full marks for the questions

- 1. (a) Determine the point group for each element of the following molecules and write all the symmetry elements present in it:

 1½×2=3
 - (i) H₂O
 - (ii) XeOF₄
 - (b) Write down all the symmetry elements of H_2O .
 - (c) What are significant figures? Calculate and give the answer with the correct number of significant numbers:

1.02 + 8.2 + 3.33 + 9.781

2

2

OR

2.	(a)	Distinguish between accuracy and precision with example.
	(b)	A molecule has the following symmetry elements/operations:

 $8C_3(4C_3^1, 4C_3^2)$ $3C_2$, E, $6S_4(3S_4^1, 3S_4^3)$

 $6 \sigma_d$

What point group would you assign to this molecule? Give an example of such molecule.

- (c) In term of symmetry operation, explain the following terms: 1×2=2
 - (i) Equivalent configuration
 - (ii) Identical configuration
- 3. (a) Give the structural formulae of the following:
 - (i) Cupron
 - (ii) Dimethylglyoxime

Write some of the important applications of both in qualitative and quantitative analysis.

(b) What is co-precipitation? What are the factors responsible for co-precipitation?

1+2=3

3

3

2

(c) What is meant by EDTA titration? Mention the type of indicators used in this type of titration.

OR

- **4.** (a) Discuss some of the advantages and disadvantages of organic reagent over inorganic reagent.
 - (b) Explain in what manner, the stability of metal-EDTA complex varies with—
 - (i) the change of the metal cation;
 - (ii) the pH of the medium. $1\frac{1}{2} \times 2=3$
 - (c) Give one example of adsorption indicator. Mention its uses in argentometric titration.
- 5. (a) Describe nuclear chain reaction with reference to fission of ²³⁵U and discuss the concept of critical mass.
 - (b) Discuss the seperation of isotopes by electrolytic method.
 - (c) Define Q-value. What is its significance?

D23/186

(Turn Over)

3

2

3

3

2

(Continued)

OR

6.	(a)	Calculate the binding energy per
		nucleon of oxygen atom 8016, which
		has a mass of 15.994910 a.m.u.
		Given:

Mass of neutron = 1.008665 a.m.u. Mass of proton = 1.007277 a.m.u. Mass of electron = 0.000548 a.m.u.

- (b) Write short notes on (any two): $1\times2=2$
 - (i) α-decay
 - (ii) Magic number
 - (iii) Positron decay
- (c) Explain stability of atomic nuclei in terms of neutron to proton ratio. 2
- 7. (a) Draw a diagram to show how the ionic radii of a bivalent metal ion of the first transition series element vary in presence and absence of crystal field. Explain its important features.
 - (b) What are the factors that affect the magnitude of crystal field stabilization energy parameter (Δ_0) in complexes?
 - (c) Arrange the following complexes in increasing order of CFSE (Δ_0) value and give explanation for your answer: $[Rh(NH_3)_6]^{3+}$, $[Ir(NH_3)_6]^{3+}$, $[Co(NH_3)_6]^{3+}$

OR

- 8. (a) Write the salient features of crystal field theory.
 - (b) Draw the crystal field diagram in tetrahedral field.
 - (c) Explain why $[Fe(H_2O)_6]^{3+}$ ion is more paramagnetic than $[Fe(CN)_6]^{3-}$ ion. 2
- 9. (a) Explain how the magnetic susceptibility is measured by Gouy's method.
 - (b) Calculate the spin only magnetic moment (μ_s) of the following: $1\frac{1}{2}\times2=3$
 - (i) $K_3[FeF_6]$
 - (ii) K₃[Fe(CN)₆]
 - (c) Explain and give examples of an anti-ferromagnetic substance and an ferromagnetic substance.

OR

- 10. (a) Write down the formula for calculation of spin magnetic moment and find out the spin only magnetic moment of the following complexes:
 - (i) $\left[MnCl_4\right]^{2-}$
 - (ii) $[CoF_6]^{4-}$

D23/186

3

3

3

2

2

3

(b)	What	is	meant	by	magnetic	
	susceptibility		χ_m^{corr} ?	How is	s it related	
	to mag	netic r	noment	μ_{eff} ?		

2

- (c) What is Curie's law? What is the significance of Curie point?
- (d) Draw a diagram to show magnetic susceptibility χ_m Vs. T (temperature) for anti-ferromagnetic substance. 1½
