5/H-73 (v) (Syllabus-2015)

2022

(November)

COMPUTER SCIENCE

(Honours)

(CS-501 T)

(Operating System and Introduction to LINUX)

Marks: 56

Time: 3 hours

The figures in the margin indicate full marks for the questions

Answer one question from each Unit

Unit---I

- 1. (a) Explain the role of an operating system as an extended machine.
 - (b) What are system calls? Explain briefly read system call. 2+2=4
 - (c) Draw the Gantt chart and calculate the completion time, turn-around time, average turn-around time, waiting time and average waiting time for

3

the following processes using Shortest Remaining Time First (SRTF) scheduling algorithm:

5

5

(Continued)

Process	Arrival Time	Burst Time		
<i>P</i> 1	0	7		
P2	1	5		
P3	2	3		
P4	3	1		
P5	4	2		
<i>P</i> 6	.5	1		

- 2. (a) Write briefly on the ways, a process can be created and a process can be terminated. 2+2=4
 - (b) Bring out the difference between a program and a process. What do you understand by a process control block (PCB)?
 - (c) What is a race condition? What is a critical region? What do you understand by mutual exclusion? 1+1+1=3

UNIT-II

- 3. (a) What is a deadlock? What are the necessary conditions for deadlock to occur? Discuss the methods for handling deadlock.

 1+4+4=9
 - (b) Explain deadlock detection with one resource of one type.

4. (a) Consider the following snapshot of a system:

	Allocation			Max			Available		
	X	Y	Z	X	Y	Z	X	Y	z
P_0	0	o	1	8	4	3	3	2	2
P ₁	3	2	0	6	2	0			
P ₂	2	1	1	3	3_	3			

Answer the following questions using Banker's algorithm:

- (i) What is the content of the need matrix?
- (ii) Is the system in a safe state? Show at least two safe sequences of processes for execution such that the system does not fall in deadlock.
- (iii) If a request from process P_0 arrives for (0, 0, 2), can the request be granted immediately? 1+4+2=7
- (b) Explain deadlock prevention using attacking the no preemption condition and attacking the hold and wait condition. 2+2=4

Unit—III

5. (a) Explain the concept of paging with the help of an example.

2

5

5

(b) Consider the following page reference string:

1, 2, 3, 4, 2, 1, 5, 3, 2, 4, 6

How many page faults would occur in three-page frame by using LRU, OPTIMAL and FIFO page replacement policies?

- 6. (a) Explain the function of the second chance page replacement algorithm to handle page requests, citing with an example.
 - (b) What is Belady's anomaly? Explain with an example.

UNIT-IV

- 7. (a) Briefly explain any six attributes of a file.
 - (b) Bring out the differences between sequential file access and random file access.

8. (a) Suppose the following disk request sequence (track numbers) for a disk with 200 tracks (numbered from 0 to 199) is given:

82, 170, 43, 140, 24, 16, 190

Assume that the initial position of the R/W head is on track 50. Calculate the total number of track movements by R/W head using FCFS, SSTF and Scan disk scheduling algorithms.

3×3=4

(b) Briefly explain I-node.

UNIT--V

- 9. (a) What is the difference between cat a.txt and cat > a.txt? Give the syntax of chmod command. 3+2=5
 - (b) Explain any three types of Shell.
 - (c) Explain briefly the kernel. 3
- 10. (a) Write a shell program that checks whether a given integer number is an Armstrong number or not.
 - (b) Write short notes on the following UNIX commands with an example each: 2×3=6
 - (i) rm.
 - (ii) cp.
 - fiii) wc.

5