5/H-29 (vii) (Syllabus-2019)

2022

(November)

MATHEMATICS

(Honours)

(H-53)

(Differential Equations)

Marks: 30

Time: 2 hours

The figures in the margin indicate full marks for the questions

Answer two questions, taking one from each Unit

UNIT-I

1. (a) By using normal form, solve the following equation:

 $\frac{d^2y}{dx^2} - 4x\frac{dy}{dx} + (4x^2 - 1)y = -3e^{x^2}\sin 2x$

- (b) Solve the following equation: 4 yz(y+z)dx + zx(x+z)dy + xy(x+y)dz = 0
- (c) Use the method of variation of parameters to solve the following equation:

$$y'' - y' - 2y = 4x^2$$

5

6

2. (a) Transform the equation

$$x^6y'' + 3x^5y' + a^2y = \frac{1}{x^2}$$

by changing the independent variable and hence solve it.

(b) Solve the following simultaneous equations:

$$\frac{dx}{dt} = x - 2y$$

$$\frac{dy}{dt} = 5x + 3y$$

(c) Solve the following:

$$\frac{dx}{y+z} = \frac{dy}{z+x} = \frac{dz}{x+y}$$

UNIT-II

In the following questions, p and q denote $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$

3. (a) Solve the following:

$$x(y^2-z^2)p+y(z^2-x^2)q=z(x^2-y^2)$$

(b) Form a partial differential equation by eliminating f from

$$f(x+y+z, x^2+y^2-z^2)=0$$

(c) Find the singular integral of

$$z = px + qy + c\sqrt{1 + p^2 + q^2}$$

(a) Find the differential equation of the integral surface of

$$2y(z-3)p+(2x-z)q=y(2x-3)$$

which passes through the circle z = 0, $x^2 + y^2 = 2x$.

- (b) Find the complete integral by Charpit's method of $xp + 3yq = 2(z x^2q^2)$.
- (c) Find the complete integral of

$$p^2 + q^2 = (x^2 + y^2)z 5$$

6

5

4

5

5