4/EH-23 (iv) (Syllabus-2019)

2023

(May/June)

CHEMISTRY

(Elective/Honours)

[(General Chemistry—IV) (Inorganic, Organic and Physical)]

(Chem-EH-401)

Marks: 56

Time: 3 hours

The figures in the margin indicate full marks for the questions

SECTION-I

(Inorganic)

(Marks: 18)

1. (a) What are the simple and mixed organometallic compounds? Give one example each. Write down one method of preparation of organometallic compound of lithium. 2+1=3

- (b) What is the difference between interhalogen compounds and polyhalide ions? Give one method of preparation of polyhalide of iodine. 2+1=3
- (c) Write down one method of preparation of cyanogen and one reaction to show the resemblance in chemical properties between CN⁻ and Cl⁻ ions. 1½+1½=3

OR

- 2. (a) What are inorganic polymers? Indicate the manner in which they differ from organic polymers.
 - (b) How are the linear and cross-linked silicones prepared? Draw their structures.
 - (c) What are pi-bonded organometallic compounds? Name one compound and indicate the hapticity of the ligand. 2+1=3
- 3. (a) On the basis of Werner's theory, explain why cobalt amine complex CoCl₃·3NH₃ does not give white precipitate of AgCl with AgNO₃.

(b) What type of isomerism is exhibited by the following compounds? 1+1=2

- (i) [PtCl₂(NH₃)₂]
- (ii) $[Cr(C_2O_4)_3]^{3-}$
- (c) Give the IUPAC names of the following coordination compounds: 1+1=2
 - (i) $(NH_4)_2$ [Pt(SCN)₆]
 - (ii) [Cu(NH₃)₄]SO₄
- (d) What are chelating ligands and chelates? Give one example.

OR

- 4. (a) Give the number of unpaired electrons in a strong and weak octahedral field for Cr²⁺. Draw their crystal field energylevel diagram.
 - (b) Calculate the effective atomic number of Fe in [Fe(CN)₆]³⁻. Does it fulfill the effective atomic number rule? Give reasons for your answer.

3

3

3

2

3

(c) Name the type of isomerism exhibited by the following pairs of compounds:

 $[Cr(H_2O)_6]Cl_3$ and $[Cr(H_2O)_5Cl]Cl_2 \cdot H_2O$

(d) On the basis of valence bond theory, predict the magnetic behaviour of [MnCl₄]²⁻. SECTION-II

(Organic)

(Marks: 19)

- 5. (a) Complete the following reactions: $1\times3=3$
 - (i) Maltose $\frac{Br_2/H_2O}{}$?

(iii)
$$CH_2OH$$
 $C=O$
 $HO-C-H$
 $H-C-OH$
 $H-C-OH$
 CH_2OH

- (b) Explain the term 'epimerisation' citing a suitable example. 1½
- (c) How can you prepare urea by Wohler's method?
- (d) What are the essential amino acids?

 Draw the structures of any two essential amino acids.

 1+1=2
- (e) What are antibiotics and antibacterial drugs? Give one example for each.

D23/934

(Continued)

1

2

D23/934

(Turn Over)

1

OR

6. (a) Identify the products in the following reactions: $2 \times 2 = 4$

(i) CHO

H—C—OH

HO—C—H

$$\xrightarrow{\text{Br}_2/\text{H}_2\text{O}} A \xrightarrow{\text{Pyridine}} B$$

H—C—OH

 $\xrightarrow{\text{C}} C$

Na/Hg HCl

- (ii) Sucrose $\xrightarrow{\text{(CH_3)}_2\text{SO}_4} E \xrightarrow{\text{H}_2\text{O}/\text{H}^{\oplus}} F + G$
- (b) How can you synthesize glutamic acid by Gabriel method?
- (c) How does urea react with the following? 1+1=2 (i) H_2O
 - (ii) CH₃COCl
- (d) Give a method of preparation for each of the following: $1+\frac{1}{2}=1\frac{1}{2}$
 - (i) Paracetamol
 - (ii) Barbituric acid

7. (a) Complete the following reactions (with mechanisms): 2×2=4

(i)
$$\langle N \rangle$$
 + CHCl₃ \xrightarrow{KOH} ?

(ii)
$$\longrightarrow$$
 + KNO₃ $\xrightarrow{\text{H}_2\text{SO}_4}$?

- (b) Define iodine value of oils and mention its significance. 11/2
- (c) "Detergents are superior to soaps."

 Explain. 1
- (d) What are chromophores and auxochromes? Illustrate by giving suitable examples.
- (e) Draw the structure of malachite green. 1

OR

8. (a) Explain why furan is less reactive than pyrrole towards electrophilic substitution.

D23/934

(Continued)

D23/934

(Turn Over)

2

(b) Complete the following reactions (with mechanisms): $1\frac{1}{2}\times2=3$

(i)
$$\langle NH_3, H_2O \rangle$$
?

(ii)
$$\frac{\text{NaNH}_2, \text{liq.NH}_3}{100 \text{ °C}}$$
?

- (c) Draw the structure of Bismark brown indicating the auxochromic and chromophoric groups in it.
- (d) What are the characteristics of a good dye?
- (e) Write short notes on the following: 1+1=2

 (i) RM value
 - (ii) Drying oils

SECTION—III

(Physical)

(Marks: 19)

9. (a) Define hydrolysis of a salt. Why is an aqueous solution of sodium acetate basic? Derive an expression for the hydrolysis constant of this solution.

1+1+2=4

(b) Draw and explain the conductometric titration curve obtained when a strong acid is titrated against a weak base.

1+2=3

(c) Calculate the pH of a mixture containing 0.01 M acetic acid and 0.03 M sodium acetate solutions.

$$(K_a = 1.8 \times 10^{-5} \text{ at } 25 \text{ °C})$$

21/2

OR

- 10. (a) Discuss with the help of graphs the variation of equivalent conductance with concentration of strong and weak electrolytes. 2+2=4
 - (b) Derive the Ostwald's dilution law and mention its uses. 2+1=3

(c) The molar conductivities at infinite dilution of NaOH, NaCl and BaCl₂ are

$$248 \times 10^4 \text{ S m}^2 \text{ mol}^{-1}$$
,

$$127 \times 10^{-4} \text{ S m}^2 \text{ mol}^{-1}$$

$$280 \times 10^{-4} \text{ S m}^2 \text{ mol}^{-1}$$

respectively. Calculate the molar conductivity of Ba(OH)₂ at infinite dilution.

11. (a) What are the main points of difference between an electrochemical cell and an electrolytic cell (at least four points)?

- (b) Draw a labelled phase diagram of the sulphur system and describe the important points, lines and areas in the diagram.
- (c) Write the cell reaction for the following electrochemical cell:

Fe,
$$Fe^{2+}(0.1 M) \| Cd^{2+}(0.001 M)$$
, Cd

Calculate the e.m.f. of the cell at 25 °C, if

$$E_{\mathrm{Fe}^{2+},\mathrm{Fe}}^{\circ} = -0.44\,\mathrm{V}$$
 and $E_{\mathrm{Cd}^{2+},\mathrm{Cd}}^{\circ} = -0.40\,\mathrm{V}$

1+21/2=31/2

(Continued)

21/2

OR

- 12. (a) Calculate the number of phases, components and degrees of freedom in the following systems: 1½+1½=3
 - (i) A mixture of ice, water and water vapour at equilibrium
 - (ii) $MgCO_3(s) \rightleftharpoons MgO(s) + CO_2(g)$
 - (b) What is an incongruent melting point?

 Describe the phase diagram of a twocomponent system involving an
 incongruent melting point, taking the
 example of NaCl-H₂O system. 1+2½=3½
 - (c) Define the following with one example for each: $1\frac{1}{2}+1\frac{1}{2}=3$
 - (i) Half-cells
 - (ii) Azeotropes

* * *