4/EH-29 (iv) (Syllabus-2019)

2023

(May/June)

MATHEMATICS

(Elective/Honours)

(Algebra—II and Dynamics)

(GHS-41)

Marks: 75

Time: 3 hours

The figures in the margin indicate full marks for the questions

Answer five questions, taking one from each Unit

Use two separate answer books for Algebra—II and Dynamics

(Algebra—II)

UNIT-I

1. (a) If W is a group, p, q, $r \in W$ and e is the identity element of W, prove the following results: $2 \times 2 = 4$

(i)
$$qp = qr \Rightarrow p = r$$

(ii)
$$pq = e \Rightarrow qp = e$$

- (b) State the definition of subgroup of a group. If G is a group, $a \in G$ such that $a^n = e$, for some $n \in \mathbb{N}$, then prove the following: 1+3+3=7
 - (i) $a, a^2, a^3, ..., a^{n-1}$ are distinct elements of G.
 - (ii) $\langle a \rangle = \{a^i : i = 0, 1, 2, ..., n-1\}$, where $a^n = e$, for some $n \in \mathbb{N}$, is a subgroup of G.
- (c) If A is an Abelian group, prove that $(xy)^m = x^m y^m$, $\forall x, y \in A$ and $m \in \mathbb{N}$.
- 2. (a) Give a standard definition of a binary operation. If $A = \{a, b\}$ and $f = \{((a, a), a), ((a, b), b)\}$, is f a binary operation on A? Justify your answer. 2+2=4

(b) Prove that any subgroup of a cyclic group is cyclic. Hence deduce that any subgroup of \mathbb{Z} w.r.t. usual addition of integers, is of the form $n\mathbb{Z}$, where $n \in \mathbb{Z}$.

4+2=6

3

4

- (c) Give a definition of the Euler's phi function, $\phi(n)$. Find the value of $\phi(24)$.

 1+1=2
- (d) Use Euler's theorem to find the last digit of 7^{20} .

UNIT-II

- 3. (a) If $f(x+2) = x^4 3x^3 + 4x^2 5x 9$, express f(x) in powers of x.
 - (b) If the roots of the equation $x^n = 1$ are 1, $\alpha_1, \alpha_2, ..., \alpha_{n-1}$, prove that

$$(1-\alpha_1)(1-\alpha_2)...(1-\alpha_{n-1})=n$$
 3

- (c) Solve the equation $x^3 7x^2 + 11x + 3$, if one root is $\sqrt{5} 2$.
- (d) State Descartes rule of sign. Use it to establish that the equation $x^6 3x^2 x + 1 = 0$ has at least a pair of imaginary roots. 1+3=4
- 4. (a) If α , β , γ are the roots of the equation $ax^3 + bx^2 + cx + d = 0$, find the value of $\Sigma \alpha^2 \beta$ in terms of the coefficients.
 - (b) Solve the equation

$$x^4 + x^3 - 16x^2 - 4x + 48$$

given that the product of two of its roots is 6.

(c) Solve the equation $x^3 - 6x - 4 = 0$ by Cardan's method.

4

4

5

(Dynamics)

UNIT-III

- 5. (a) A particle of mass m is acted upon by a force $m\mu \left[x + \frac{a^4}{x^2} \right]$ towards the origin. If it starts from rest at a distance a, show that it will arrive at the origin in time $\frac{\pi}{4\sqrt{\mu}}$.
 - (b) Two smooth spheres of masses m_1 , m_2 collide against each other and in the process their velocities change from u_1 , u_2 to v_1 , v_2 , respectively. Show that the loss in kinetic energy is equal to

$$\frac{1}{2}(1-e^2)\frac{m_1m_2}{m_1+m_2}(u_1-u_2)^2$$

Hence deduce that kinetic energy is conserved for a perfectly elastic impact.

7+1=8

7

6. (a) A particle of mass m moves in a straight line under the action of a force which is always directed towards a fixed point and which varies inversely as the square of the distance of the particle from the fixed point. If the particle

starts from rest at a distance a from the fixed point, show that the square of the time taken by the particle to reach the fixed point is directly proportional to a^3 .

(b) A particle moves with SHM in a straight line. In the first second, after starting from rest it travels a distance a and in the next second, it travels a distance b in the same direction. Prove that the amplitude of motion is $\frac{2a^2}{3a-b}$ and its

period is
$$\frac{2\pi}{\cos^{-1}\left(\frac{b-a}{2a}\right)}$$
.

UNIT-IV

- 7. (a) A body is projected at an angle α to the horizon, so as just to clear two walls of equal height a at a distance 2a from each other. Show that the range is equal to $2a\cot\left(\frac{\alpha}{2}\right)$.
 - (b) A particle of mass m moves from rest in a straight line under the action of a constant force in a medium whose resistance to the motion is m(a+bv),

D23/942

7

8

7

where a and b are constants and v is the velocity at time t. If V is the terminal velocity, prove that the particle in time t has moved a distance x, where $bx = V(bt-1+e^{-bt})$.

8

8. (a) Two bodies are projected from the same point in directions making angles θ_1 and θ_2 with the horizon and strike at the same point in the horizontal plane through the point of projection. If t_1 and t_2 are the corresponding times of flight, show that

$$(t_1^2 - t_2^2)\sin(\theta_1 + \theta_2) = (t_1^2 + t_2^2)\sin(\theta_1 - \theta_2)$$

(b) A ball is thrown vertically upwards in a medium which offers a resistance kv per unit mass when the speed is v. If v_o is the velocity of projection and t_1 is the time that the ball returns to the starting point, prove that $(g + kv_0)(1 - e^{-kt_1}) = qkt_1$.

UNIT---V

9. (a) A particle describes a curve for which s and ψ vanish simultaneously. If the particle moves with uniform speed u and the acceleration at any point s is $\frac{u^2c}{s^2+c^2}$, find the intrinsic equation of the curve.

(b) A heavy particle of weight W, attached to a fixed point by a light inextensible string, describes a circle in a vertical plane. The tension in the string has values mW and nW, respectively, when the particle is at the highest and the lowest points of its path. Show that n = m + 6.

(c) A body describes a circle of radius a with a uniform speed v. Show that the radial and transverse accelerations are $-\frac{v^2}{a}\cos\theta \text{ and } -\frac{v^2}{a}\sin\theta, \text{ if a diameter is taken as the initial line and one end of the diameter as pole.}$

10. (a) A shell of mass m is ejected from a gun of mass M by an explosion which generates kinetic energy E. Prove that the initial velocity of the shell is $\sqrt{\frac{2ME}{(M+m)m}}$ and the recoil velocity of the gun is $\sqrt{\frac{2mE}{M(M+m)}}$.

(b) A shell of mass $m_1 + m_2$ moving with velocity u, breaks up into two masses m_1 and m_2 , which moves in the same

D23/942

4

(Continued)

(Turn Over)

5

6

4

direction with relative velocity V. Show that the energy of explosion is given by

$$E = \frac{1}{2} \frac{m_1 m_2}{m_1 + m_2} V^2$$

6

(c) Show that for a particle, sliding down the arc of a smooth cycloid whose axis is vertical and vertex lowest and starting from a cusp, the vertical velocity is maximum when it has described half the vertical height.

* * *