6/H-29 (x) (Syllabus-2019)

2023

(May/June)

MATHEMATICS

(Honours)

(Advanced Algebra)

(H-62)

Marks: 45

Time: 2 hours

The figures in the margin indicate full marks for the questions

Answer three questions, taking one from each Unit

UNIT-I

- 1. (a) Prove that every subgroup of an Abelian group is normal.
 - (b) Give example of a group G and a subgroup H of G such that the index of H in G is equal to 2. Is it true that if N is a normal subgroup of G, then the index of N in G must be equal to 2? Justify your answer.

D23/1051

(Turn Over)

3

(c) Let G be a group and $g \in G$. Prove that $T_g: G \to G$ defined as

$$T_q(x) = gxg^{-1}, \ \forall \ x \in G$$

is an automorphism of G.

8

2. (a) Prove that a field has no non-trivial ideal.

Give an example of a commutative ring which has at least one non-trivial ideal.

4+1=5

5

4

6

- (b) Prove that every finite integral domain is a field. Is the converse true? 6+1=7
- (c) Prove that $\mathbb{Z} = 36\mathbb{Z} + 55\mathbb{Z}$.

UNIT-II

- 3. (a) State and prove the fundamental theorem of ring homomorphism. 2+8=10
 - (b) Prove that any ideal of a Euclidean ring is a principal ideal.
- **4.** (a) Prove that if F is a field, then F[x] is an integral domain.
 - (b) Prove that if R is a commutative ring with identity and M is a maximal ideal of R, then R/M is a field.
 - (c) Give the definition of a principal ideal domain (PID). Prove that \mathbb{Z}_p is a PID, where p is a prime. 1+4=5

UNIT-III

5. (a) Show that the set of all 2×2 matrices is a vector space over \mathbb{R} with respect to usual addition and scalar multiplication of matrices.

5

(b) Show that the set

$$B = \{1, (x-1), (x-1)^2, (x-1)^3\}$$

forms a basis of the vector space $F_3[x]$ over the field \mathbb{R} , where $F_3[x]$ is the set of all polynomials over \mathbb{R} with degree less than or equal to 3.

5

5

(c) If V(F) is a finite-dimensional vector space which is a direct sum of its two subspaces, U and W, then prove that

$$\dim V = \dim U + \dim W$$

6. (a) If

$$A = \begin{bmatrix} 0 & 1 & 1 \\ 0 & 5 & 1 \\ 0 & 0 & 2 \end{bmatrix}$$

then-

- (i) find the linear transformation T corresponding to A with respect to the standard basis of \mathbb{R} ;
- (ii) evaluate rank T and nullity T. 3+4=7

(Turn Over)

(Continued)

(b) Find the characteristic polynomial of the matrix

$$\begin{bmatrix} 2 & 3 & -1 \\ 1 & 3 & -1 \\ -1 & 1 & 1 \end{bmatrix}$$

Also determine its eigenvalues.

3+2=5

(c) Show that the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined by

$$T(x, y, z) = (3x, 4x - y, 2x + 3y - z)$$
 is invertible.

3
