6/H-24 (viii) (Syllabus-2015)

2023

(May/June)

PHYSICS

(Honours)

(Atomic and Molecular Spectroscopy, Nuclear Physics)

[PHY-08 (T)]

Marks: 56

Time: 3 hours

The figures in the margin indicate full marks for the questions

Answer Question No. 1 and any four from the rest

- 1. (a) Calculate the Lande g-factor for the level 3P_1 .
 - (b) The moment of inertia of the CO molecule is 1.46×10^{-46} kg·m². Calculate the energy (in eV) and the angular velocity in the lowest rotational energy level of the CO molecule. (Given $h = 6.63 \times 10^{-34}$ J-s; $1 \text{ eV} = 1.60 \times 10^{-19}$ J)

(Turn Over)

3

3

- (c) Calculate the binding energy of He^4 in MeV. Given: Mass of neutron $M_{\text{n}} = 1.0087$ a.m.u.; Mass of proton $M_{\text{p}} = 1.0073$ a.m.u.; Mass of Helium $M_{\text{He}} = 4.0026$ a.m.u.
- (d) Complete the reactions for the events written as follows: $1\times3=3$ (i) $P^-+P^+\to\pi^0+\pi^-+...+\pi^++\pi^-$
 - (ii) $\pi^+ \rightarrow ... + \nu_{\mu}$
 - (iii) $\mu^+ \rightarrow e^+ + ... + \overline{\nu}_{\mu}$
- 2. (a) What is Zeeman effect? Distinguish between normal and anomalous Zeeman effect. Give the quantum mechanical theory of anomalous Zeeman effect for one-electron system.

1+2+4=7

3

- (b) What are L-S and J-J coupling schemes? 2+2=4
- A. (a) Discuss the pure rotational spectra of a heteronuclear diatomic molecule as a rigid rotator and show that pure rotation spectrum of such a molecule consists of a series of equally-spaced lines separated by a constant wave number difference of 2B.

 5+2=7

- (b) Explain the R-branch and the P-branch in vibrational-rotational spectra.
- 4. (a) What is Raman effect? Discuss its quantum mechanical explanation and hence obtain the expression for the Raman shifts. Write down the selection rule for Raman allowed transitions.

2+4+2=8

4

- (b) What are Stokes and anti-Stokes lines?
 Explain why Stokes lines are more intense than anti-Stokes lines.
 1+2=3
- **5.** (a) Discuss the basic properties of a nucleus.
 - (b) Briefly discuss the shell model of a nucleus.
 - (c) What is artificial transmutation? Give examples. 2+1=3
- 6. (a) Discuss the Bohr-Wheeler theory of nuclear fission and hence obtain the condition of spontaneous fission.
 - (b) Derive the four-factor formula for nuclear fission.
- 7. (a) Discuss Fermi's theory of beta decay. 6

8

3

- (b) What are elementary particles? Classify elementary particles on the basis of mass. \(\frac{1}{2}+\frac{1}{2}=1\)
- (c) Discuss the four fundamental interactions in nature.
- 8. Write short notes on any two of the following: $5\frac{1}{2}\times2=11$
 - (a) Stern-Gerlach experiment
 - (b) Frank-Condon principle
 - (c) X-ray fluorescence (XRF)
 - (d) Gamow's theory of α-decay
