6/H-24 (viii) (Syllabus-2020)

2023

(May/June)

PHYSICS

(Honours)

(Atomic Physics—II, Molecular Spectroscopy, Nuclear Physics—II, Astrophysics)

[PHY-06 (T-B)]

Marks: 56

Time: 3 hours

The figures in the margin indicate full marks for the questions

Answer Question No. 1 and any four from the rest

1. (a) A spectral line of wavelength 6000 Å shows a separation of 0·2 Å between the component lines in a normal Zeeman pattern when subjected to a magnetic field of flux density 1·2 Wb/m². Calculate the value of e/m for the electron.

4

(b) Calculate the Q-value of the following nuclear reaction:

$$_{7}^{14}\text{N} + \alpha \rightarrow _{8}^{17}\text{O} + p$$

where $m_p = 1.0078 \,\mathrm{u}$, $m_\alpha = 4.0026 \,\mathrm{u}$, $m_N = 14.0031 \,\mathrm{u}$, $m_O = 16.9994 \,\mathrm{u}$ and $1 \,\mathrm{u} = 931 \,\mathrm{MeV}$.

2

2

5

(Continued)

(c) Consider the following strong interaction:

$$\pi^- + p^+ \rightarrow \Lambda^o + \pi^o$$

Is it an allowed or a forbidden reaction? Justify your answer by using suitable conservation laws.

- (a) Explain the salient features of the vector atom model. Briefly explain the experiment which provides evidence in support of this model.
 - (b) What are quantum numbers? Give the physical interpretation of the quantum numbers involved in completely defining a quantum state of the atom.
 - (c) Calculate the values of L and J for the states (i) 1S_0 and (ii) ${}^2D_{3/2}$.
- 3. (a) Describe the main features of the alkali spectrum. What is the effect of spin-orbit interaction on this type of spectrum? 2+1=3

- (b) Briefly explain L-S and J-J coupling for a two-electron atomic system. Find all the possible spectral terms for calcium (Z = 20) using L-S coupling in the sp configuration.
- (c) State and prove Larmor's theorem and write down the expression for Larmor's frequency. 2+1=3
- 4. (a) What are the three types of molecular spectra? Mention the region of electromagnetic spectrum in which they belong.

 1½+1=2½
 - (b) Consider a vibrating diatomic molecule as a harmonic oscillator. Obtain the expression for the allowed or quantized energy levels for this molecule. Explain why molecules like HCl show vibrational rotational spectra whereas molecules like H₂ do not.

 4½+2=6½
 - (c) With the help of a schematic diagram, discuss the Frank-Condon principle in electronic band spectra.
- 5. (a) Give a brief and qualitative quantum mechanical explanation of the Raman effect.

D23/1042

(Turn Over)

3

4

(b)	A Raman line is observed at 4768.5 Å
	when the substance was excited by a
	4358.3 Å radiation. Calculate the
	vibrational frequency in cm ⁻¹ that
	causes this Raman line.
(c)	Describe the principle of working of
	atomic emission spectroscopy and

6. (a) What is meant by binding energy of a nucleus? Deduce an expression for the binding energy of a nucleus. 1+2=3

atomic absorption spectroscopy.

- Give three main evidences that support the nuclear shell model of nuclei.
- Describe the Fermi's theory of β-decay. (c) 6
- Distinguish between nuclear fission and 7. (a) nuclear fusion. Explain the energy released in the two processes from the binding energy curve. 2+2=4
 - Discuss the carbon-nitrogen cycle for the production of stellar energy. 4
 - Briefly explain the four different types of fundamental interactions by mentioning their strengths and ranges.

Describe how muons and pions were discovered in cosmic-ray showers. How was the mass of muons established?

2+2=4

- (b) What are resonance particles? How are they produced? 1+1=2
- Give a brief outline of the three different types of the end products of stellar evolution.
- (d) What are Cepheid variables? What are their two main classes? 1+1=2

2

3

3+3=6