2023

(May/June)

PHYSICS

(Honours)

(Solid-State Physics—II, Electronics—II and FORTRAN Programming)

[PHY-06 (T-A)]

Marks: 56

Time: 3 hours

The figures in the margin indicate full marks for the questions

Answer Question No. 1 and any four from the rest

- 1. (a) The Fermi energy for lithium is 4.72 eV at absolute zero. Calculate the number of conduction electrons per unit volume in lithium. Given $h = 6.63 \times 10^{-34} \text{ J-s}$, $m = 9.11 \times 10^{-31} \text{ kg}$.
 - (b) Calculate the (i) operating frequency and (ii) feedback fraction for Hartley oscillator, where its tank circuit

D23/1041

(Turn Over)

3

contains a capacitor of 20 pF and two inductors of 1000 μ H and 100 μ H. The mutual inductance between the two inductors is 20 μ H.

(c) Evaluate the following arithmetic FORTRAN statement for I = 5, J = 7 and K = 10:

X = I * I / J - K * 2 / I

- 2. (a) Write Laue's equations representing the conditions of X-ray diffraction by a crystal and hence obtain Bragg's law using Laue equations.

 11/2+31/2=5
 - (b) Prove that the reciprocal lattice of an FCC lattice is a BCC lattice.
 - (c) What is Madelung constant? Show that Madelung constant for an infinite linear chain of ions of alternating unit charge at an equilibrium separation is 2ln2.

1+3=4

- 3. (a) What is a phonon? Obtain the dispersion relation for elastic waves in a linear monatomic chain with nearest neighbour interaction.
 - (b) Discuss in detail Einstein's theory of lattice heat capacity of solid.
 - (c) State Wiedemann-Franz law.

4. (a) What is Hall effect? Deduce an expression for Hall coefficient. 1+4=5

- (b) Derive an expression for the effective mass of an electron according to the band theory of solids.
- c) Distinguish between Type-I and Type-II superconductors with examples. 2+1=3
- 5. (a) Describe Langevin's theory of paramagnetism.
 - (b) Explain isotope effect in superconductors.
 - (c) What are field effect transistors (FETs)?
 Explain the working of a JFET with the help of a diagram.

 1+4=5
- 6. (a) What is an OP-AMP? Discuss the working of an OP-AMP as an integrator with the help of a diagram. 1+3=4
 - (b) What are meant by CMRR and slew rate of an OP-AMP? 1½+1½=3
 - (c) Draw the small-signal low-frequency hybrid parameter equivalent circuit of CE single-stage amplifier and derive an expression for input impedance and output impedance.

 1+2+2=5

4

5

2

- 7. (a) Draw a neat diagram of a two-stage RC-coupled transistor amplifier. Show that the voltage gain of an RC-coupled transistor amplifier in the mid-frequency range is independent of frequency.

 1+5=6
 - (b) What are multiplexers and demultiplexers? Discuss a 4:1 multiplexer with the help of a diagram. 1+1+4=6
- 8. (a) Differentiate between STOP and END statements in FORTRAN programmes. 2
 - (b) Write the following mathematical expressions as FORTRAN expressions:

 $2 \times 2 = 4$

- (i) $a + \operatorname{sech}^{-1} x$
- (ii) $ax^2 + bx + c$
- (c) Explain the following FORMAT specifications used in FORTRAN with an example: 2×2=4
 - (i) E format
 - (ii) F format
- (d) Explain the following non-executable statements: 1×2=2
 - (i) NAMELIST
 - (ii) DIMENSION

* **