6/H-29 (vii) (Syllabus-2015)

2018

(April)

MATHEMATICS

(Honours)

(Advanced Calculus)

(GHS-61)

Marks: 75

Time: 3 hours

The figures in the margin indicate full marks for the questions

Answer **five** questions, selecting **one** from each Unit

UNIT-I

1. (a) If a function f is bounded and integrable on [a, b] and there exists a function F such that $F'(x) = f(x) \ \forall x \in [a, b]$, then show that

$$\int_{a}^{b} f(x)dx = F(b) - F(a)$$
 6

- (b) Show that a bounded function f having only a finite number of points of discontinuity on [a, b] is integrable on [a, b].
- (c) Show that

$$\left| \int_{p}^{q} \frac{\sin x}{x} dx \right| \le \frac{2}{p}$$
if $q > p > 0$.

2. (a) Show that

$$\int_0^1 x^{m-1} (1-x)^{n-1} dx$$

is convergent iff both m and n are positive.

- (b) Let ϕ be bounded and monotonic of $[a, \infty[$ and $\int_{\alpha}^{\infty} f(x)dx$ be convergent. Show that $\int_{\alpha}^{\infty} f(x)\phi(x)dx$ is convergent.
- (c) Show that

$$\int_0^\infty \frac{e^{-ax}}{x} e^{-bx} dx = \log\left(\frac{b}{a}\right)$$

UNIT-II

- 3. (a) Let f be a continuous function on $[a, b] \times [c, d]$ and let $\phi(y) = \int_a^b f(x, y) dx$. If f_y exists and is continuous, show that ϕ is differentiable and $\phi'(y) = \int_a^b f_y(x, y) dx$.
 - (b) Find the value of $\int_0^{\pi} \frac{dx}{a + b \cos x}$ where a > 0 and |b| < a.
- 4. (a) If f(x, y) is continuous where $c \le y \le d$ and $a \le x$ and the integral $\phi(y) = \int_a^\infty f(x, y) dx$ is uniformly convergent, show that ϕ can be integrated under the integral sign.
 - (b) Establish the right to integrate $\int_0^\infty e^{-xy} \cos mx dx$ under the integral sign and deduce that $\int_0^\infty e^{-ax} e^{-bx} \cos mx dx = \frac{1}{2} \log \frac{b^2 + m^2}{a^2}$

under the integral sign and
$$\int_0^\infty \frac{e^{-ax} - e^{-bx}}{x} \cos mx dx = \frac{1}{2} \log \frac{b^2 + m^2}{a^2 + m^2}$$
where $a > 0$, $b > 0$.

7

7

(Turn Over) 8D/1867

, - winted

^{8D}/1867

UNIT-III

5. (a) Show that

$$\int_{a}^{b} \int_{a^{2}/x}^{x} F dx dy = \int_{a^{2}/b}^{a} \int_{a^{2}/y}^{b} F dx dy + \int_{a}^{b} \int_{y}^{b} F dx dy$$

- (b) Evaluate $\iint x^2 y^2 dx dy$ over the domain $\{(x, y): x \ge 0, y \ge 0 \text{ and } x^2 + y^2 \le 1\}.$
- State Green's theorem. Verify Green's theorem by evaluating in two ways the integral $\int (x^2ydx + xy^2dy)$ taken along the closed path formed by y = x, $x^2 = y^3$ in the first quadrant.
- 6. (a) Evaluate $\int_C (x^2 + y^2) dx$ and $\int_C (x^2 + y^2) dy$ where C is the arc of the parabola $y^2 = 4ax$ between (0, 0) and (a, 2a).
 - Show that

$$\int_{0}^{1} \left\{ \int_{0}^{1} \frac{x - y}{(x + y)^{3}} dy \right\} dx = \frac{1}{2} \text{ and}$$

$$\int_{0}^{1} \left\{ \int_{0}^{1} \frac{x - y}{(x + y)^{3}} dx \right\} dy = -\frac{1}{2}$$

UNIT-IV

- Define interior point, open set and limit 1+1+1=3 point in \mathbb{R}^n .
 - Give examples of the following with brief 1+1=2 (b) justification:
 - (i) An infinite bounded set with two
 - limit points (ii) A bounded set which is neither closed nor open
 - State and prove Cantor's intersection 6 theorem.
 - Prove that an arbitrary union of open 4 (d) sets in \mathbb{R}^n is open.
- Let $S, T \subseteq \mathbb{R}^n$. Show that (a)
 - (i) $(S \cup T)' = S' \cup T'$
 - 4+4=8 (ii) $int(S \cap T) = int(S) \cap int(T)$
 - Find the interior and the set of limit 2 points of the set $\left\{\frac{1}{n} + \frac{1}{m} : m, n \in \mathbb{N}\right\}$. (b)
 - If f is continuous on $X \subseteq \mathbb{R}^n$ and A is a compact subset of X, show that f(A) is (Turn Over) compact.

^{βD}/1867

^{8D}/1867

Unit---V

- 9. (a) Show that $f(x) = \frac{1}{x}$ is not uniformly continuous on (0, 1].
 - (b) If f is continuous and strictly increasing on [a, b], show that f^{-1} is also continuous and strictly increasing on [f(a), f(b)].
 - Let $f:[a,b] \to \mathbb{R}$ be continuous. $f(a) \cdot f(b) < 0$, show that there is a point c between a and b such that f(c) = 0.
- 10. *(a)* (i) Define partial derivative directional derivative of a real valued function f defined on \mathbb{R}^2 at apoint (a, b).
 - (ii) Show that a function f defined by $f(x, y) = \frac{x^3 + y^3}{x - y}$ if $x \neq y$, f(x, y) = 0 if x = y is not continuous at the origin but but the first partial order
 - derivatives exist at that point. (b) Prove that a real-valued function f of two variable real-valued function f of noint two variables is differentiable at a point (a, b) if it is differentiable at a point (a, b) if it has continuous first-order partial derivatives at that point.

If (c)

$$f(x, y) = \frac{xy(x^2 - y^2)}{x^2 + y^2}$$

where $(x, y) \neq (0, 0)$ and f(0, 0) = 0, show 4 that $f_{xy}(0, 0) \neq f_{yx}(0, 0)$.

8D/1867

Continued 30 1000/1867

6/H-29 (vii) (Syllabus-2015)