2/EH-24 (ii) (Syllabus-2015)

2016

(April)

PHYSICS

(Elective/Honours)

SECOND PAPER

(Electromagnetism, Electronics—I)

Marks: 56

Time: 3 hours

The figures in the margin indicate full marks for the questions

Answer Question No. 1 and any four from the rest

- 1. (a) State Gauss' law. Apply this law to calculate the electric field of a charged infinite plane. 1+2½=3½
 - (b) What is an electrical image? Use the method of electrical images to find the electric field at a point near a conducting plane.

 1+3½=4½
 - (c) Two drops of water having a charge of 3×10^{-9} coulomb each and a surface potential of 500 volts combine to form a single drop. Calculate the surface potential of the single drop.

4

- 2. (a) Find the magnetic field at a point on the axis of the solenoid. Then obtain the magnetic field (i) when the solenoid is very long, (ii) at a point on the end of the solenoid.

 3+1+15
 - (b) Define gyromagnetic ratio and susceptibility.
 - (c) Discuss the magnetic behaviour of steel and soft iron in terms of hysterisis loops.
- 3. (a) Discuss the growth and decay of electric current in CR circuit. What is the time constant of the circuit?
 - (b) Explain the terms resonance and power factor in a.c. electrical circuits. 11/2+11/4
 - (c) A coil of resistance 20 Ω and inductance 0.5 H is switched to direct current 200 V supply. Calculate the rate of increase of current at the instant of closing the switch.
- 4. (a) Explain what is meant by mutual and self-inductances. Derive the relation

$$M = \sqrt{L_1 L_2}$$

where the symbols have their usual significance.

- (b) Write down Maxwell's equations in free space.
- (c) A step-up transformer works on 220 V and gives 2 amperes to an external circuit. The turns ratio between primary and secondary coils is 2:25. Assuming 100% efficiency, find the secondary voltage, primary current and power delivered.
- 5. (a) State Thevenin's theorem and prove it for a two-terminal network. 2+4=6
 - (b) Find the open-circuit voltage and Thevenin resistance for a terminal network shown in the diagram below:

- (c) Explain the meaning of hybrid parameters.
- characteristics of a CE *p-n-p* transistor.

 What is output characteristics? Explain the meaning of cut-off region, saturation region and active region from this characteristics.

 2+2+1½=5½

D16/1442

(Continued)

(Turn Over)

2

3

D16/1442

- (b) Explain the terms load line and Q-point. 11/2+11/2=3 · (c) The current gain of a transistor in a CE
- circuit is 49. Calculate the CB current gain. Find the base current when the
- emitter current is 3 mA. 7. (a) What is transistor а multistage
- amplifier? Draw and describe the circuit of a two-stage RC-coupled CE amplifier. 1+2+2=5 (b) is Barkhausen criterion
 - sustained oscillations? (c) What is feedback ratio in feedback amplifiers? An amplifier has a gain of 400. When negative feedback is applied, the gain is reduced to 300. Find the 11/2+21/2=4 feedback ratio.
- 8. (a) Describe the principle of working of an operational amplifier (OP-AMP). Explain the common-mode rejection ratio. What is the advantage of OP-AMP? $2\frac{1}{2}+1\frac{1}{2}+1$ (b) Explain NAND and NOR logic gates with circuit diagrams. Write down the truth table for both. 2+2+2=6