CS-101 T (Syllabus-2015)

2015

(October)

COMPUTER SCIENCE

(Elective/Honours)

(Data Structure using C)

Marks: 37

Time: 2 hours

The figures in the margin indicate full marks for the questions

Answer any one question from each Unit

UNIT—I

- 1. (a) What is data type? What are different data types available in C? Explain with examples.

 1+2½=3½
 - (b) Differentiate between structure and union using suitable example. 2
 - (c) What are static variables? Explain their scope and lifetime taking an appropriate sample program fragment. ½+3=3½

- What is function definition? How do you 2. (a) call a function? Differentiate between actual parameters and formal 1+1+11/2=31/2 parameters.
 - How is a single-dimensional array passed to a function? Give example.
 - Define the following: (i) Self-referential structure
 - (ii) Enumeration

UNIT-II

- (a) What is linked list? Give an algorithm to traverse a singly linked list pointed by 'P'. 1+2=3
 - What is stack? Write an algorithm to transform an infix expression into a postfix expression.
- Define linear queue and explain its 4. (a) operations. What are the advantages of circular queue? 2+11/2=31/2
 - Write short notes on any two of the following: 11/2×2=3
 - (i) Time-space tradeoff
 - (ii) Rate of growth of algorithm
 - (iii) Big O notation

- 5. (a) What is binary search tree? Write an algorithm to search for a particular element in a binary search tree. 1+31/2=41/2
 - (b) What is meant by threaded binary tree? How is threaded binary tree represented in the computer's memory? Explain its advantages over binary search tree.

11/2+11/2+1=4

- 6. (a) Write an algorithm for pre-order traversal of a binary tree. 21/2
 - Write short notes on the following: 2×3=6
 - (i) AVL tree
 - (ii) B-tree
 - (iii) Complete binary tree

UNIT-IV

- What is graph? Explain its representations used. 1+2=3
 - (b) Write Dijkstra's algorithm for finding the shortest path between two vertices in a weighted graph. 31/2

11/2+11/2=3

- 8. (a) Write an algorithm to delete an edge (A, B) from a graph G. Assume that A and B are both nodes in the graph G represented by an adjacency matrix. 3½
 - (b) For the weighted graph given below, construct the minimal spanning tree using Kruskal's algorithm:

- 9. (a) What is hashing? Explain any two hashing methods. 1+2=3
 - (b) Write an algorithm to sort an array using bubble sort. Write its complexity for best, worst and average cases.

21/2+1=31/2

3

- 10 (a) What is collision? Explain any three collision resolution techniques commonly used while hashing. 1+3=4
 - (b) Compare between linear search algorithm and binary search algorithm. 21/2
