1/EH-23 (i) (Syllabus-2015)

2016

(October)

CHEMISTRY

(Elective/Honours)

(General Chemistry-I)

(Chem-EH-101)

Marks: 56

Time: 3 hours

The figures in the margin indicate full marks for the questions

SECTION-I

(Inorganic)

(Marks: 19)

- 1. (a) State Heisenberg's uncertainty principle and write its mathematical form. 1½
 - (b) Mention the limitations of Bohr atomic model.
 - (c) Calculate the uncertainty of velocity of an electron if the uncertainty of its position is 10^{-10} m ($h = 6.6 \times 10^{-34}$ kg m² s⁻¹ and $m_e = 9.1 \times 10^{-31}$ kg).

(Turn Over)

2

(đ)	For the principal quantum number $n=4$, what are the permitted values of azimuthal quantum numbers (1)? Show that for $n=4$, the maximum number of
	electrons in this level is equal to 32.

2.	(a)	Draw	the	shapes	of	various	d-orbitals.	21/2

- What is Aufbau principle? Arrange the orbitals of an atom in increasing order of their energies.
- What is packing fraction? Draw a plot of packing fraction against the corresponding mass numbers elements
- (d) Write the electronic configuration of the elements belonging to period-4 and group-3 of the long form of periodic table. Identify the element.
- Give reason for the fact that ionization energies of C, N and O follow the order C < N > 0. 11/2
- Explain why NH₃ has a higher boiling point than that of PH3.

(b)	Arrange	the	following		molecules		in	
	increasin	g c	order	of	their	dip	ole	
	moments	and						

- (i) CH₃Cl
- (ii) CH₂Cl₂
- (iii) CHCl₃
- (iv) CCl₄
- What is meant by limiting radius ratio? Discuss the effect of radius ratio on the geometry of an ionic solid. 21/2
- With the help of band theory, differentiate between a conductor and a semiconductor.

OR

- On the basis of VSEPR theory, predict the shapes of the following species. Indicate the bond angles:
 - (i) BeF₂
 - (ii) BO_3^{3-}
 - (iii) SF₄
 - Draw the potential energy showing the variation of energy with internuclear distance in the formation of hydrogen molecule (H2).

D7/17

(Turn Over)

21/2

21/2

3

2

2.

2

- (c) Using MO theory, explain why O₂ has a lower bond dissociation energy than that of O₂⁺, but N₂ has a higher bond dissociation energy as compared to N₂⁺.
- (d) Draw Born-Haber cycle for the formation of CaF₂ and write an expression for the lattice energy equating it with the various energy terms involved in the cycle.

SECTION—II

(Organic)

(Marks: 19)

- 5. (a) Give two examples where carbon atom is sp^2 and sp hybridized. Explain these hybridizations with the help of orbital pictures.
 - (b) What is hyperconjugation? Taking a suitable example, illustrate why the phenomenon of hyperconjugation is called as no bond resonance.

(c) Assign the symbol E or Z to each of the following with proper numbering of each substituent according to their priorities:

11/2

(ii)
$$\begin{array}{c} H_2N \\ C=C \\ D_2N \end{array}$$
 $C=N$

- (d) 1,2-dibromoethene has two geometrical isomers. Dipole moment of one is 1.35D and that of the other is zero. Write down their structures.
- (e) Draw the Newman projection formula of all the conformers of n-butane and arrange them in decreasing order of stability.

OR

6. (a) n-butylalcohol and the isomeric diethylether have the same mass, but the boiling point of n-butylalcohol is 118 °C and that of ether is 35 °C. Account for this fact.

D7/17 (Turn Over)

D7/17

(Continued)

2

(b) Convert the following Newman projections to Fischer projections:

(c) What are conjugate acids and bases?

Label the conjugate acid-base pairs in the following reactions:

(ii) $CH_3COOH + H_2O \rightleftharpoons H_3O^+ + CH_3COO^-$

(d) 'Arrange the following carbocations in their decreasing order of stability with appropriate reasons:

(e) Presence of chiral centres is not the necessary condition for a compound to be optically active. Justify.

7. (a) How can each of the following transformations be carried out? 2+2=4
 (i) CH≡CH→CH₃C≡CH→CH₃COCH₃

(ii) $CH_3CH=CH_2 \longrightarrow CH_3CH-CH_2 \longrightarrow CH_3C=CH$ Br Br

(b) Predict the product when benzene is treated with CH₃CH₂CH₂Cl in the presence of AlCl₃. Give the mechanism of the reaction.

(c) What major product would you expect to be formed when the following are subjected to nitration? 1+1=2

(i) Nitrobenzene

(ii) Chlorobenzene

(d) Cyclopropane undergoes ring opening reactions to give open-chain addition compounds but cyclopentane does not. Explain.

OR

8. (a) Write a step-by-step reaction mechanism for the light induced monochlorination of methane.

D7/17 (Turn Over)

D7/17

(Continued

- What is hydroboration? Show how propene can be converted propan-1-ol of bv the method hydroboration with mechanism.
- Why does benzene undergo electrophilic substitution more easily than nucleophilic substitution?
- (d) What were the assumptions made by Baeyer in his strain theory?
- Complete the following reactions:

(ii)
$$\longrightarrow$$
 + $\operatorname{Cl}_2 \xrightarrow{\text{UV light}}$?

SECTION-III

(Physical)

(Marks: 18)

- **9.** (a) Derive the kinetic gas equation $PV = \frac{1}{3}mN\overline{C}^2$, where the terms have their usual meanings.
 - What is compressibility factor Z of a 1 gas?
 - (ii) Write van der Waals' equation of state. Name the terms in the equation.

(Continued)

21/2

1

2

2

Calculate the temperature at which the (c) root-mean-square velocity of oxygen gas is equal to 1500 ms⁻¹.

2

OR

- Deduce (i) Boyle's law, (ii) Charles' law **10.** (a) and (iii) Avogadro's law from kinetic gas 11/4+11/4+11/4=41/4 equation.
 - What is viscosity of a liquid? How does it vary with temperature? 1+1/2=11/2
 - What are (i) smectic liquid crystals and (ii) nematic liquid crystals? 11/2+11/2=3
- Point out the differences between 11. (a) lyophilic and lyophobic colloids.
 - Write notes on the following: 2×2=4 (i) Electrophoresis
 - (ii) Gold number
 - Define the following: 1½×2=3 (i) Space lattice (ii) Unit cell

OR

- 12. (a) Explain the origin of charge on colloidal particles.
- (Turn Over) D7/17

D7/17

(10)

- (b) Write notes on the following: 2×2=4
 (i) Brownian movement
 - (ii) Dialysis
- (c) Define Miller indices. Calculate the Miller indices of crystal planes which cut through the crystal axes at (2a, -3b, -3c).

D7-3800/17