2nd Copy

3/EH-29 (iii) (Syllabus-2015)

2016

(October)

MATHEMATICS
(Elective/Honours)

(Algebra—II and Calculus—II)

(GHS-31)

Marks: 75

Time: 3 hours

The figures in the margin indicate full marks for the questions

Answer five questions, choosing one from each Unit

UNIT-I

- 1. (a) Prove that the set $\{1, -1, i, -i\}$ is a finite Abelian group of order 4 with respect to multiplication. $[i^2 = -1]$
 - (b) Show that every subgroup of a cyclic group is cyclic.

(c) Answer the following with justification:

5

5

5

4

- (i) Can an Abelian group have a non-Abelian subgroup?
- (ii) Can a non-Abelian group have an Abelian subgroup?
- (iii) Can a non-Abelian group have a non-Abelian subgroup?
- (d) Prove that intersection of any two subgroups of a group is a subgroup.
- 2. (a) If G is a finite group, show that for each $a \in G$, there exists a positive integer n such that $a^n = e$, where e is the identity element of a group G.
 - (b) Show that any two left cosets of a subgroup H in a group G have the same (finite or infinite) number of elements.
 - (c) Show that an infinite cyclic group has exactly two generators.

UNIT-II

- 3. (a) Solve $x^4 x^3 + 3x^2 + 31x + 26 = 0$, if one of the roots of the given equation is 2 3i. 5
 - (b) Find the polynomial f(x+2), when $f(x) = x^4 3x^3 + 4x^2 2x + 1$

(c) Remove the second term of the equation

$$x^3 + 6x^2 + 12x - 19 = 0$$

and then solve the given equation.

4. (a) (i) If α , β , γ are the roots of the equation $x^3 + px^2 + qx + r = 0$, form the equation whose roots are

$$\beta \gamma + \frac{1}{\alpha}, \quad \gamma \alpha + \frac{1}{\beta}, \quad \alpha \beta + \frac{1}{\gamma}$$

(ii) If $z = \cos 2\theta + i \sin 2\theta$ $w = \cos 2\phi + i \sin 2\phi$

show that

$$z^m w^n + \frac{1}{z^m w^n} = 2\cos 2(m\theta + n\phi) \qquad 2$$

(b) If the equation

$$3x^4 + 4x^3 - 60x^2 + 96x - k = 0$$

has four real and unequal roots, show that k must lie between 32 and 43.

(c) Solve the equation $x^3 - 18x - 35 = 0$ by Cardan's method.

(Turn Over)

6

· Unit—III

- 5. (a) Prove that the convergent sequence is bounded. Is the converse true? Justify with an example.
 - (b) Show that if $x_n = \frac{3n+1}{n+2}$, then the sequence $\{x_n\}$ is strictly increasing. Is the sequence convergent? Justify your answer. Also find its limit. 3+2+1=6
 - (c) Define Cauchy sequence. Is the sequence $\{n^2\}$ a Cauchy sequence?

 Justify your answer. 2+3=5
- 6. (a) Test the convergence of the following series (any two): 3×2=6
 - (i) $\sum_{n=1}^{\infty} \frac{n!}{n^n}$
 - (ii) $\sum_{n=1}^{\infty} \frac{2n+1}{(n+1)^2}$
 - (iii) $\sum_{n=1}^{\infty} \left(\frac{1}{\sqrt{n}} + \frac{1}{\sqrt{n-1}} \right)$
 - (b) State Leibnitz's theorem for alternating series. Show that $1 \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} \frac{1}{\sqrt{4}} + \cdots$ converges.
 - (c) Define a power series. Find the interval of convergence of $\sum_{n=0}^{\infty} \frac{x^n}{n!}$. 1+3=4

UNIT-IV

- 7. (a) State and prove Cauchy's mean value theorem. 1+4=5
 - b) Find the asymptotes of the curve $x^3 2y^3 + xy(2x y) + y(x y) + 1 = 0$ 5
 - (c) (i) Find the approximate value of log 10·1 by the use of differentials.

 Given that log₁₀ e = 0·4343.
 - (ii) Show that of all rectangles of a given area, the square has the smallest perimeter.
- A. (a) Let the function be defined by

$$f(x, y) = \begin{cases} \frac{2xy}{\sqrt{x^2 + y^2}}, & \text{when } x^2 + y^2 \neq 0\\ 0, & \text{when } x = 0 = y \end{cases}$$

Show that $f_{xy}(0, 0) \neq f_{yx}(0, 0)$.

(b) State and prove Euler's theorem on homogeneous function of three variables x, y, z. Applying Euler's theorem to the function $V = \tan^{-1} \frac{x^3 + y^3}{x - y}$, show that $x \frac{\partial V}{\partial x} + y \frac{\partial V}{\partial y} = \sin 2V$.

(Turn Over)

2

3

UNIT-V

- 9. (a) Expand $\log(1+x)$ in a finite series in powers of x with Cauchy's form of remainder.
 - (b) State and prove Taylor's theorem in infinite form with Lagrange's form of remainder.6

4

5

- (c) State and prove the fundamental theorem of integral calculus. 1+4=5
- 10. (a) Find the volume of the solid of revolution obtained by revolving the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ about the minor axis. 4
 - (b) Find the length of arc of the given curves $x = e^{\theta} \sin \theta$, $y = e^{\theta} \cos \theta$ from $\theta = 0$ to $\theta = \frac{\pi}{2}$.
 - (c) Evaluate $\int_{2}^{4} \int_{4/x}^{\frac{20-4x}{8-x}} (4-y) \, dy \, dx$ by changing the order of integration.
