1/EH-73 (i) (Syllabus-2015)

2019

(October)

COMPUTER SCIENCE

(Elective/Honours)

(CS-101 T)

(Introduction to Data Structure Using C)

Marks: 37

Time: 2 hours

The figures in the margin indicate full marks for the questions

Answer one question from each Unit

Unit-I

- 1. (a) What is an algorithm? Explain the different approaches to develop algorithms. 1+3=4
 - (b) What is a variable? Summarize the rules for naming variables in C. 1+2=3
 - (c) Compare the use of the switch statement with the use of nested if-else statements. Which is more convenient?

21/2

2. (a	what kinds of anniant		(a)	Define a binary search tree. Write down the structure for defining a binary search tree in C. 1½+1=2½ Briefly explain the binary tree traversal methods. 5 Define a B-tree. Mention the different
	referential structures useful? 2+1=3	3	(b)	characteristics of a B-tree. 1+2½=3½
	UNIT—II			Unit—IV
	What is big-O notation? Write a note on space-time trade-off. 1+2=3 List the different characteristics of a linked list.	7.	(a)	State the difference between the breadth-first search and depth-first search traversal methods of a graph. 4
4. (a)	Write an algorithm to evaluate a postfix expression.		(b)	Explain with example the adjacency list representation of a graph. 2½
(b)	advantage of a circular what is the	8.	(a)	Explain the working of Dijkstra's algorithm for finding the shortest path. 41/2
41 ⁴	linear queue? queue over a 1+2=3	†	(b)	What is a minimal spanning tree? 2
	Unit—III			Unit-V
	What is a complete binary tree? How does it differ from a strictly binary tree? 2+2=4 Explain linked list representation of a	9.	(a)	What are the advantages and disadvantages of linear search over binary search? Write down the time complexity of both the algorithms. 3+2=5
	2		(b)	Define hashing. 1½
20D/ 34	(Continued)	20D,	/34	(Turn Over)

(平10分4年至6月時(11(821)) (22)

- 10. (a) Explain in brief the open addressing methods of collision resolution techniques.
 - (b) Mention the average-case and the worstcase complexity of quick-sort algorithm.

11/2

* + +