1/EH-28 (i) (Syllabus-2015)

2019

(October)

STATISTICS

(Elective/Honours)

[STEH-1(TH)]

(Descriptive Statistics, Numerical Analysis and Probability)

Marks: 56

Time: 3 hours

The figures in the margin indicate full marks for the questions

Answer five questions, selecting one from each Unit

Unit-I

- 1. (a) What do you mean by statistical data?
 Write a note on the types of statistical data. What are the different methods of collecting primary data and secondary data?

 1+2+3=6
 - (b) Explain the following terms with rough sketches: 2×3=6
 - (i) Histogram
 - (ii) Frequency polygon
 - (iii) Ogive

- 2. (a) Give the concept of measure of dispersion. Mention measures the different of dispersion with advantages and disadvantages. What are the different requisites for an ideal measure of central tendency?
 - (b) Define moments. Express first four central moments in terms of moments about the origin.

Unit-II

- 3. (a) How can you use scatter diagram to obtain an idea of the correlation
 - Explain multiple and partial relation coefficients with examples. 2+2-
 - (c) Prove that always lies between -1 and +1. coefficient
- 4. (a) What is linear regression? Why there in general are two 1+2=3 lines
 - (b) Obtain the angle between the two lines
 - (c) Write a note on intraclass correlation

Unit—III

Define the operators Δ and E. Obtain the relationship between Δ and E. Show that

$$\Delta \log f(x) = \log \left[1 + \frac{\Delta f(x)}{f(x)} \right]$$

1+1+3=5

- State and prove Newton's divided 1+5=6 difference formula.
- What do you mean by numerical Deduce general the integration? quadrature formula and hence obtain Simpson's $\frac{1}{3}$ rd rule of numerical 2+5+2=9 integration.
 - Define the following terms: 1+1=2
 - (i) Arguments
 - (ii) Entry

UNIT-IV

- 7. (a) State and prove addition theorem of 1+3=4probability.
 - (b) If A and B are two independent events, then show that-
 - (i) A and \overline{B} are also independent events:
 - (ii) \overline{A} and \overline{B} are also independent 2+2=4 events.

(Turn Over)

^{20D}/326

(Continued D/326

1+4+2=

(c) If A and B be two mutually exclusive events, then prove that

$$P(A \cup B) = P(A) + P(B)$$

- 8. (a) Let a pair of fair dice be thrown. If the two numbers appearing be different, then find the probabilities that (i) the sum is 6 and (ii) the sum is 5 or less.
 - (b) If $P(A) = \alpha$, $P(B) = \beta$, then show that

$$P(B) = \beta$$
, then show that
$$P(A \mid B) = \frac{(\alpha + \beta - 1)}{\beta}$$

(c) State and prove Bayes' theorem.

U_{NIT}—V

- 9. (a) Define discrete random variables. continuous , and
 - (b) Define the terms (i) probability mass tobility function (p.m.f.) and (ii) probability density function (p.m.f.) and (iii) probability density function (p.d.f).
 - (c) The diameter of an electric cable, say, random random to be a continuous random variable with p.d.f.

$$f(x) = 6x(1-x); \quad 0 \le x \le 1$$

Verify that f(x) is p.d.f.

(d) If $\mu_X(t)$ is the m.g.f. of a random variable X about the origin, then show that the rth moment u', is given by

$$\mu_r' = \left[\frac{d^r \mu_X(t)}{dt^r}\right]_{t=0}$$

10. (a) Prove that

3

$$V(X) = E[V(X|Y)] + V[E(X|Y)]$$

where X and Y are any two random variables.

Show that (b)

$$E(X) = F[E(X | Y)]$$
 2

The joint p.d.f. of two random variables (c) X and Y is given by

$$f(x,y) = \frac{9(1+x+y)}{2(1+x)^4(1+y)^4}; \quad 0 \le x < \infty$$

Find the marginal distribution of X and Y, and the conditional distribution of Y for X = x.

1/EH-28 (i) (Syllabus-2015)

5

20D-400/326