3/EH-29 (iii) (Syllabus-2015)

2017

(October)

MATHEMATICS

(Elective/Honours)

(GHS-31)

(Algebra—II and Calculus—II)

Marks: 75

Time: 3 hours

The figures in the margin indicate full marks for the questions

Answer five questions, taking one from each Unit

UNIT-I

- 1. (a) Show that the set of nth roots of unity is a group under multiplication of complex numbers.
 - (b) Prove that a non-empty subset H of a group G is a subgroup of G if and only if $a, b \in H$ implies $a b^{-1} \in H$, where b^{-1} is the inverse of b in G.

(Turn Over)

4

4

- (c) Verify whether the binary operation '*' defined on Q by $a*b = \frac{ab}{2}$ (i) commutative and (ii) associative. 1+2=3
- Show that a group G is Abelian if and only if $(ab)^2 = a^2b^2$ for all $a, b \in G$.
- 2. (a) Prove that every group of prime order is cyclic. Is it Abelian? Justify your 3+1=4
 - (b) State and prove Lagrange's theorem on the order of a finite group.
 - Show that the remainder on dividing 79 by 15 is 7. State the theorem you
 - (d) Give an example to show that the union of two subgroups of a group may not

UNIT-II

3. (a) Solve the equation $x^4 + x^3 - 16x^2 - 4x + 48 = 0$ given that the product of two of its 8D/125

(Continued)

- (b) Expand $x^5 6x^3 + x^2 1$ in powers of x+1.
- If α , β , γ be the roots of the equation $x^3 - ax^2 - bx - c = 0$, find in terms of the coefficients the values of (i) $\Sigma \alpha^2 \beta$ and (ii) $\sum \alpha^2 \beta^2$. 3+3=6
- **4.** (a) Find all the values of $(1+i)^{1/7}$ by 5 De Moivre's theorem.
 - (b) Solve the equation $x^3 3x + 1 = 0$ by 6 Cardan method.
 - Find the equation whose roots are the roots of $x^5 + 4x^3 - x^2 + 11 = 0$ each diminished by 3.

UNIT-III

- 5. (a) Prove that if a sequence converges, then its limit is unique.
 - (b) Show that the sequence $\{x_n\}$, where $x_n = \left(1 + \frac{1}{n}\right)^n$ is monotonic increasing. Show also that it is bounded. What you conclude convergence of this sequence? 3+2+1=6

(Turn Over)

8D/125

Use Cauchy's general principle of convergence to prove that the sequence $\{x_n\}$ converges, when

$$x_n = 1 + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!}$$

- 6. (a) What is an alternating series? Prove that the alternating series $\sum_{n=0}^{\infty} (-1)^{n-1} a_n$ converges if $\{a_n\}$ is positive monotonic decreasing sequence and $a_n \to 0$ as $2^{+4=6}$
 - Test the convergence of the following
 - (i) $\sum_{n=1}^{\infty} \frac{2n-1}{n(n+1)(n+2)}$
 - (ii) $\sum_{n=1}^{\infty} \left(\frac{n}{2n+1} \right)^n$
 - (iii) $\sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdot 5 \cdot 7 \cdot \dots \cdot (2n-1)}{2 \cdot 4 \cdot 6 \cdot \dots \cdot 2n(2n+1)}$
 - Find the interval of convergence of the power series $\sum_{n=1}^{\infty} \frac{n}{n+1} x^n.$

UNIT-IV

- State and prove Lagrange's mean value theorem of differential calculus.
 - (b) Show that $\frac{x}{1+x} < \log(1+x) < x$, for all 4 positive real values of x. .
 - Show that $x^{1/x}(x>0)$ is a maximum at x = e and deduce that $e^{\pi} > \pi^{e}$. 3+1=4
 - Find the points of inflexion, if any, of the curve $x = (\log y)^3$.
- When is a function $f:D\to\mathbb{R}$ said to be continuous at a point (a, b), where **8.** (a) $D \subset \mathbb{R}^2$ and $(a, b) \in D$? Test the continuity of the function defined by

$$f(x, y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}}, & (x, y) \neq (0, 0) \\ 0, & (x, y) = (0, 0) \end{cases}$$

1+4=5

2

at the origin.

Show that

8D/125

$$\lim_{\substack{x \to 0 \\ y \to 0}} \frac{x^2 y}{x^4 + y^2}$$

does not exist.

2

(Turn Over)

^{8D}/125

(c) If

$$u = \frac{x^2 y^2}{x + y}$$

apply Euler's theorem to find the value of $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$ and hence deduce that

$$x^{2} \frac{\partial^{2} u}{\partial x^{2}} + 2xy \frac{\partial^{2} u}{\partial x \partial y} + y^{2} \frac{\partial^{2} u}{\partial y^{2}} = 6u \qquad 2+4=$$

(d) State Schwarz's theorem on mixed partial derivative for a real-valued function of two real variables.

UNIT-V

- 9. (a) Expand $f(x) = \sin x$ in a finite series Cauchy's form.
 - (b) Let $f:[a, b] \to \mathbb{R}$ be a continuous such that F'(x) = f(x), for all $x \in [a, b]$. Show that $\int_a^b f(x) dx = F(b) F(a)$.
 - (c) Show that the area bounded by the parabolas $x^2 = 4y$ and $y^2 = 4x$ is

8D/125

(Continued)

10. (a) Evaluate $\iint_C x^2 y^2 dx dy$, where

$$C = \{(x, y) : x \ge 0, y \ge 0, x^2 + y^2 \le 1\}$$

5

5

- (b) Find the length of the arc of the parabola $y^2 = 16x$ measured from the vertex to an extremity of its latus rectum.
- (c) Find the volume and the surface area of the solid generated by revolving the cycloid $x = a(\theta + \sin \theta)$, $y = a(1 + \cos \theta)$ about x-axis.

3/EH-29 (iii) (Syllabus-2015)