3/EH-24 (iii) (Syllabus-2015)

2017

(October)

PHYSICS

(Elective/Honours)

(Thermal Physics, Waves)

[PHY-03 (T)]

Marks: 56

Time: 3 hours

The figures in the margin indicate full marks for the questions

Answer Question No. 1 which is compulsory and any four from the rest

- (a) The efficiency of a Carnot engine is $\frac{1}{6}$. On reducing the temperature of the sink by 65 °C the efficiency becomes $\frac{1}{3}$. Find the temperature between which the engine initially work.
 - A blackbody at 1227 °C emits maximum energy of wavelength 2000 nm. If the (b) sun emits maximum wavelength 550 nm, what is the temperature of the sun?

(Turn Over)

3

3

		· - /	()
	(c)	A string of length 0.4 m and mass 10^{-2} kg is tightly fixed at its ends. Identical wave pulses are produced at one end at equal interval of time Δt . Find the minimum value of Δt for constructive interference between successive pulses if the tension on the string is 1.6 N.	3
	(d)	The de Broglie wavelength of a non-relativistic electrons is 2.0 Å. What is its energy?	3
2.	(a)	What are transport phenomena?	1
	(b)	Derive an expression for the viscosity η of a gas in terms of mean free path of its molecules.	5
	(c)	Discuss the effect of temperature and pressure on the coefficient of viscosity of a gas.	=3.
· .	(d)	Calculate the mean free path of a gas molecule. Given that the molecular diameter is 2x10-8	2
3.	(a)	of molecules per cc is 3×10^{19} . What is entropy?	1
:	(b)	Show that c'	4
8D/	118	Show that for an irreversible process the entropy increases.	4
	•	(Continue	za 1

	(c)	Explain thermodynamic scale of temperature.
4.	(a)	Define Boyle temperature and inversion 1+1=2 temperature.
	(b)	Explain regenerative cooling for liquefaction of gases.
	(c)	Show that the volume of a phase cell in quantum statistics cannot be less than h^3 , where h is Planck's constant.
5.	(a)	State Planck's postulates on quantum 2 theory of radiation.
	(b)	Derive Planck's radiation law.
	(c)	Explain the distribution of energy of a blackbody radiation at two different temperatures by drawing the graph. 2
6.	. (a)	Define simple harmonic motion. Set up the differential equation of motion of a simple harmonic oscillator and solve the 1+1+2=4
	(b)	equation. are damped and forced
8D	/118	

(3)

- (c) Distinguish between 'transient' and 'steady state' oscillations. Define 'sharpness of resonance' and 'quality factor'.

 1+1+1=3
- 7. (a) What are spherical waves? Show that the amplitude of a spherical wave falls off as $\frac{1}{r}$ with distance. 1+3=4
 - (b) State the conditions that a function must satisfy so that it can be expanded in Fourier series.
 - (c) A function f(t) is given by

$$f(t) = A \frac{t}{T} \qquad \text{for } 0 < t < T$$

$$f(t+T) = f(t)$$
and the Fourier

- Find the Fourier expansion of f(t).
- 8. (a) State uncertainty principle and explain its significance.

 1+3=4
 - (b) For which pair of dynamical variables is the principle valid?
 - (c) Discuss the normalization of a wave function with an example.

5

1