3/EH-23 (iii) (Syllabus-2015)

2018

(October)

CHEMISTRY

(Elective/Honours)

(General Chemistry—III)

(Chem-EH-301)

Marks: 56

Time: 3 hours

The figures in the margin indicate full marks for the questions

SECTION—I

(Inorganic)

(Marks: 18)

- 1. (a) Explain why the s-block elements do not exhibit variable valencies.
 - (b) What type of oxides will an element with atomic number 11 form? Write down the reaction of this metal oxide with water.
 - (c) Write down one method of preparation and one use of the following compounds: 1½×2=3
 - (i) Boric acid
 - (ii) Sodium thiosulphate

1

OR

2. (a)	What is catenation? Give reasons why
	on going down the group, the tendency for catenation decreases.

- (b) Write down one method of preparation of AlCl₃ along with the balanced chemical equation and draw its structure.

 1\frac{1}{2} + \frac{1}{2} = 2
- (c) Give reasons for the following: 1×2=
 (i) Sulphur can form SF₆ molecule but oxygen cannot form OF₆ molecule
 - (ii) The electron affinity of fluorine is lower than that of chlorine
- 3. (a) Explain why transition elements show more oxidation states than other elements.
 - (b) Give a reason why the radii of the elements of the third transition series are very similar to those of second transition series.
 - (c) Give a method for the preparation of UF₆.
 - (d) Explain the separation of lanthanides on the basis of ion-exchange method.

OR

4.	(a)	Write down the preparation of K ₂ Cr ₂ O ₇			
		starting from chromite ore along with			
		the chemical equations. Draw the			
		structure of Cr _o O ₂ ²			

(b) Mention two points of similarities and differences between lanthanides and actinides.

(c) Give reasons why most of the d-block elements can act as catalyst.

5. (a) What is a chelating ligand? Write down two applications of chelate formation.

1+2=3

21/2

2

(b) Write down the important postulates of Werner's coordination theory. Why is the complex CoCl₃, 3NH₃ non-ionic according to this theory?

OR

6. (a) Give the IUPAC names of the following complexes: 1×2=2

(i) [Co(NH₃)₄Cl₂]Cl

(ii) $K_3[Al(C_2O_4)_3]$

D9/51

2

1

(Turn Over)

- (b) Explain using the valence bond theory why [Fe(H₂O)₆]²⁺ ion is paramagnetic but [Fe(CN)₆]²⁻ ion is low-spin diamagnetic complex.
- (c) Identify the kind of isomerisms exhibited by the following isomers: \(\frac{1}{2} \times 2 = 1 \)
 (i) [Cr(NH₃)₆][Co(CN)₆] and
 [Co(NH₃)₆][Cr(CN)₆]

(ii) $[Co(NH_3)_5Cl]SO_4$ and $[Co(NH_3)_5SO_4]Cl$

SECTION—II (Organic)

(Marks: 19)

- 7. (a) How are carboxylic acids prepared from alkyl cyanides? Discuss with mechanism.
 - (b) Explain with chemical equations, what happens when acetic acid is—
 - (i) heated with phosphorous pentoxide:
 - (ii) treated with chlorine in the
 - presence of red phosphorous;
 (iii) reduced with lithium aluminium
 hydride.

c) Arrange the following acids in order of increasing acidity. Explain with appropriate reasons:

CH₃COOH, COOH, CH₂COOH COOH CH₂COOH

- (d) What is the role of ether in the preparation of Grignard reagent? Why is it important to use anhydrous condition in the preparation of Grignard reagent?
- (e) Write down the products in the following reactions: 1×2=2

(i)
$$CH_3-C=N+CH_3MgI \longrightarrow ? \xrightarrow{H_2O/H^+} ?$$

(ii) $CH_3-C-C_2H_5+C_2H_5MgBr \longrightarrow ? \xrightarrow{H_2O/H^+} ?$

2

1

OR

- 8. (a) Explain the mechanism of nucleophilic substitution in acid derivatives. Why are esters less reactive than acid chlorides?
 - (b) (i) Explain the weak acidic and basic characters of amides.
 - (ii) Arrange the following carboxylic acids in increasing order of acidity and explain with appropriate reasons:

D9/51 (Turn Over)

D9/51

(Continued)

3

Complete the following reactions: 2 $CH_3-CH_2-C-OCH_2CH_3 \xrightarrow{H_2O/H^+} A$

Starting from ethyl acetoacetate, how the following compounds synthesized? (i) Cinnamic acid (ii) Succinic acid

2

2

D9/51

- (e) What happens when succinic acid is heated in a current of dry ammonia? Explain with chemical equations.
- 9. (a) Discuss the mechanism of Hofmann rearrangement. On the basis of this mechanism, explain why the reaction cannot be used to prepare secondary and tertiary amines.
 - Explain with chemical equations the reaction of aniline with—
 - (i) $Br_2 H_2O$;
- (ii) benzoyl chloride. How can you explain the fact that than dimethylamine (bp 3 °C) boils lower than dimethylamine (bp 7 °C)? D9/51 (Continued)

Complete the following reactions: $CH_3CH_2Cl \xrightarrow{KCN} ? \xrightarrow{H_2/N_i} ? \xrightarrow{HNO_2} ?$

Account for the following facts: $1 \times 3 = 3$ (i) Aniline does not undergo Friedel-

11/2

11/2

- Crafts reaction (ii) Aromatic diazonium salts are more stable than aliphatic diazonium salts
- (iii) Benzene diazonium sulphate is preferably used for the production of phenol rather than hydrochloride

OR

- **10.** (a) Explain through equations the Hinsberg method of differentiating primary, secondary and tertiary amines.
 - (b) What is Sandmeyer reaction? Give a plausible mechanism of the reaction with explanation using specific set of reagents. 11/2
 - (c) Complete the following reactions: 1½×2=3 $\frac{\text{NaNO}_2}{\text{HCl. 0 °C}}? \xrightarrow{\text{CuCN}} ? \xrightarrow{\text{H}_2\text{O/H}^+} ?$

 $\frac{(CH_3CO)_2O}{CH_2COOH}? \xrightarrow{KOH} ?$ (Turn Over)

- (d) What would be the product if a solution of aniline in concentrated H₂SO₄ is mixed with concentrated HNO₃? Explain with equations.
- (e) (i) Explain why nitrobenzene undergoes electrophilic substitution with difficulty.
 - (ii) Complete the following reactions:

SECTION-III

(Physical)

(Marks: 19)

- 11. (a) Derive Gibbs-Helmholtz equation.
 - (b) Obtain an expression for entropy change of an ideal gas with respect to change in temperature and volume.
 - (c) Write the expression for the equilibrium constant of the reaction

$$N_2 + 3H_2 = 2NH_3$$
 1¹/₂

D9/51

(Continued)

(d) Calculate K_c for the reaction $2 \operatorname{SO}_3(g) \rightleftharpoons 2 \operatorname{SO}_2(g) + \operatorname{O}_2(g)$ at 27 °C. K_p for the reaction is 3.5×10^{-23} atm at 27 °C.

OR

- 12. (a) Derive van't Hoff equation for the temperature dependence of equilibrium constant.
 - (b) Show that $K_p = K_c (RT)^{\Delta n}$.
 - (c) For a heat engine, the source is at 500 K and the sink is at 300 K. What is the efficiency of this engine?
 - (d) State Trouton's rule.

2

- 13. (a) Define order and molecularity of a reaction with an example. 2+1=3
 - (b) What are pseudo-unimolecular reactions? Give examples. 2
 - (c) State Raoult's law for lowering of vapour pressure. Derive this law. 1+1½=2½
 - (d) Explain why abnormal molar mass is observed in certain cases.

D9/51 (Turn Over)

(10)

OR

14.	(a)	Derive the integrated rate equation of first-order reaction.	Derive first-ore	of
	(b)	Write Arrhenius expression for the	Write	he

- temperature-dependence of reaction rate and explain the terms involved.

 (c) Derive a relation between the osmotic pressure of a solution and molecular mass of the solute
- (d) Find the boiling point of a solution containing 0.36 gm of glucose ($C_6H_{12}O_6$) dissolved in 100 gm of water ($K_b = 0.52 \text{ K/m}$, molar mass of glucose = 180).
 - * *