3/EH-24 (iii) (Syllabus-2015)

2018

(October)

PHYSICS

(Elective/Honours)

(Thermal Physics, Waves)

[Phy-03 (T)]

Marks : 56

Time: 3 hours

The figures in the margin indicate full marks for the questions

Answer Question No. 1 which is compulsory and any four from the rest

- 1. (a) A 100 gm piece of ice at 0 °C is dropped into a container containing 200 gm of water at 30 °C. Calculate the net change in entropy of the system when the final equilibrium state is reached. Latent heat of fusion of ice = 80 cal.
 - (b) A particle executes SHM with time period 8 s and amplitude 4 cm. Calculate the velocity and acceleration when the particle is 2 cm from central position and also calculate their maximum values.

3

3

(c)	maximum energy at wavelength 2000 nm. What is the maximum temperature of the sun, if it emits the maximum energy at wavelength 550 nm?
(d)	The uncertainty in the velocity of an electron moving with a speed of 500 m/s is 0.004%. Calculate the uncertainty in the position of an electron.
(a)	State and prove the law of equipartition of energy.
(b)	Define the critical constants of a gas. Obtain the expressions for the critical constants in terms of the constants a and b of the van der Waals equation. $1\frac{1}{2}+3\frac{1}{2}=5$
(c)	What are the essential features of Brownian motion? Explain why the motions of particles in Brownian motion are random and improved the second

are random and irregular.

final temperatures.

State and prove Carnot's theorem.

Show that the work done in an adiabatic process depends only on the initial and

	(c)	Explain what you understand by the terms reversible process and irreversible process.
		1+1=2
	(d)	Define Boyle temperature and obtain an expression for it. 2
4.	(a)	a blackbody per unit area is proportional to the fourth power of its absolute temperature.
	(b)	Show that Planck radiation law reduces to Rayleigh-Jeans law in the long wavelength limit.
	(c)	What is phase space? Calculate the number of states per unit volume in phase space. 1+2=3
	(d)	What is a canonical ensemble? For which type of system, it is suitable? 1+1=2
5.	(a)	Discuss the resultant due to two mutually perpendicular SHMs which are represented by equations $x = 3\sin \omega t$ and $y = 4\cos \omega t$.
	(b)	and $y = 4\cos w$. Graphically represent the displacement, velocity and acceleration of the particle velocity and sceleration of the particle velocity SHM. (Turn Over)
D9/!	52	

2.

11/2+11/2=3

- (c) What is sharpness of resonance in forced vibration? Discuss the effect of damping on the sharpness of resonance.

 11/2+11/2=3
- (d) Write down a differential equation representing damped simple harmonic equation explaining the various terms.
- 6. (a) What are normal modes of vibration?
 - (b) A perfectly elastic string of length l which is under tension T and fixed at both ends is plucked at a point x = a to a height h and released. Find the different normal modes of vibration.
 - (c) Show that the KE and PE of the plane progressive wave are equal.
- 7. (a) Find the Fourier expansion of a square wave which is given by

$$y(t) = A$$
 for $0 < t < \frac{T}{2}$
 $y(t) = -A$ for $\frac{T}{2} < t < T$

- (b) Discuss at least two phenomena that
- classical physics failed to explain.

 (c) Illustrate the uncertainty principle by using Heisenberg's microscope.

- 8. (a) An object of mass 100 gm is moving with a velocity of 200 m/sec. Find the de Broglie wavelength of the object.
 - (b) Explain why the wave nature of larger object is hard to detect.

2

2

- (c) Derive the one-dimensional timedependent and time-independent Schrödinger equations.
- (d) What is a wave function? Give its physical interpretation. 1+2=3

D9-2200/52

(Continued)

3/EH-24 (iii) (Syllabus-2015)