5/H-23 (v) (Syllabus-2015)

2017

(October)

CHEMISTRY

(Honours)

(Chem-H-501)

Marks : 75

Time: 4 hours

The figures in the margin indicate full marks for the questions

(Part—A : Inorganic Chemistry—I)

(Marks: 38)

- 1. (a) Find out the symmetry point group in PF_5 and B_2H_6 by indicating clearly in the structures the symmetry elements present in them. 2+2=4
 - (b) The following replicate results were obtained in measuring iron content of a sample:
 - 22.23%, 22.18%, 22.25%, 22.09%, 22.15%

Establish whether the result 22.09 is a valid measurement or not, given that

corresponding rejection quotient at 90% confidence limit for 5 observations is 0.64.

3

5

2. (a) List down all the symmetry operations and symmetry elements present in [CO(NH₃)₆]³⁺ ion.

OR

- (b) What type of error would you expect to occur while taking weight of a hygroscopic compound? What precautions may be taken to minimize such an error?
- 3. (a) Give the structural and chemical formulae of oxine and α-nitroso-β-naphthol. Discuss the applications of α-nitroso-β-naphthol in both qualitative and quantitative analyses.
 - (b) Outline the advantages and limitations of organic precipitants.
 - (c) What is argentometric titration? How is chloride determined by Volhard's method?

OR

formulae of cupron and dimethylglyoxime. Write some of the

important applications of both in qualitative and quantitative analyses.

2+2=4

3

- (b) What is meant by masking and demasking of cations? Give examples. 11/2
- (c) What type of indicators is used in complexometric titration involving EDTA? How does this indicator function?
- 5. (a) What is Q-value of a nuclear reaction? What happens to Q-value when—
 - (i) $m_{\rm R} > m_{\rm P}$;
 - (ii) $m_{\rm R} < m_{\rm P}$?

(where m_R = mass of the reactants and m_P = mass of the products) 1+2+2=5

(b) How are radioisotopes separated by gaseous diffusion method?

OR

6. (a) Calculate the binding energy per nucleon (in MeV/nucleon) for the isotope ⁵⁶₂₆Fe.

Given the masses of

56_{Fe} : 55.93494 a.m.u.

neutron: 1.008665 a.m.u.

proton : 1.00783 a.m.u.

electron: 0.00054859 a.m.u.

^{8D}/233

(Turn Over)

- What are magic numbers? Why are the nuclei with magic number either proton or neutron or both extrastable?
- What are the factors that affect the **7.** (a) magnitude of crystal field stabilization energy parameter (Δ_0) in complexes?
 - Arrange the following complexes in increasing order of CFSE (Δ_0) values and give explanation for your answer: 1+1+1=3

 $[Rh(NH_3)_6]^{3+}$, $[Ir(NH_3)_6]^{3+}$, $[Co(NH_3)_6]^{3+}$

2

(c) Make the plot of hydration energies of M²⁺ ions of first row transition metals and explain the important features.

OR

- 8. (a) Draw the splitting of d-orbital in a square planar system. Explain the magnetic behaviour of K₂[Ni(CN)₄] with 11/2+11/2=3 its help.
 - Calculate the CFSE (Δ_0) for Fe²⁺ ion in high spin and low spin octahedral complexes.
 - Taking a suitable example explain the Jahn-Teller effect. (Continued)

9. (a) Describe the magnetic behaviour of K₃[FeF₆] and K₃[Fe(CN)₆] and explain their behaviour with help of crystal field theory.

What is Curie law? Why was it modified to give Curie-Weiss law? Explain.

2

2

21/2

Draw qualitative diagrams indicating magnetic susceptibility as a function of temperature for (i) simple paramagnetic, (ii) ferromagnetic and (iii) antiferromagnetic substances.

OR

Give example of one paramagnetic and **10.** (a) one diamagnetic complex of Co3+ and calculate their spin-only magnetic moment μ_s .

> for Cu(II) is normally 1.8-1.9 BM at room temperature but in dihydrate dicoppertetraacetate experimental value of μ_{eff} is 1.4 BM. Explain.

magnetic by meant What susceptibility? How is it related to 11/2 magnetic moment?

(Turn Over) 8D/233

(Part—B : Organic Chemistry—I)

(Marks : 37)

- 11. (a) Lower the pK_a value, stronger is the acid. Explain.
 - (b) Comment on the following observations: $1\frac{1}{2}\times2=3$
 - (i) Formic acid is stronger than acetic acid.
 - (ii) p-nitrophenol has higher melting point than o-nitrophenol.
 - (c) Define acids and bases on the basis of Bronsted-Lowry concept.
 - (d) Arrange the following in order of increasing basicity or acidity:

(i)
$$N$$
, N , $CH_3-C=N^2$

(ii)
$$NO_2$$
 COOH NO_2 , NO_2 , NO_2 (Continued)

8D/233

OR

- 12. (a) Electrophilic substitution reactions in naphthalene occur preferentially at C_1 . Explain.
 - (b) Complete the following reaction with mechanism:

- (c) Give the Diels-Alder method of preparation of anthracene from 1,4-naphthaquinone.
- (d) Suggest the products of the following reactions: 1½×2=3

(i)
$$OH \longrightarrow ArN_2X \longrightarrow POH/Cold$$

(ii)
$$\bigcirc$$
 OH \longrightarrow ?

(Turn Over)

13. (a) Assign the R- and S-configuration of the following optical isomers:

(i) COOH (ii) CHO

H—C—OH

H—C—Cl

COOH

2

- (b) Draw all the possible conformers of n-butane and arrange them in increasing order of energy.
- (c) Explain the stereochemical aspect of the bromination of Z-butene-2.
- (d) Draw the chair conformers of cis-1, 3-dimethyl cyclohexane. Which one is more stable and why?

OR

- 14. (a) What are the different types of dienes?

 Give example in each case.
 - (b) Complete the following reaction:

$$H_2C=CH-CH=CH_2+HX$$

What happens, when the products is heated above 60 °C?

(Continued)

- (c) What are natural and synthetic rubbers? Give examples.
- (d) Write one method of preparation of Nylon-66.
- 15. (a) Write the reaction mechanism of the formation of ester from acids.
 - (b) Predict the product of the following reactions with mechanism: 2×3=6

(i)
$$CHO$$
 + $(C_6H_5)_3P=CH_2 \longrightarrow ?$ (by Wittig reaction)

(ii)
$$CH_3$$
— C — $CH_2CH_3 + CH_2O + (CH_3)_2NH$ — \longrightarrow ? (by Mannich reaction)

(iii)
$$CH_3$$
 + $C_6H_5COC1 \xrightarrow{AlCl_3}$?

(by Friedel-Crafts reaction)

8D/233

(Turn Over)

2

2

OR

16. (a) Suggest a suitable mechanism for the following transformations: 2×3=6

- (b) Why is NaBH₄ more selective than LiAlH₄? Give one application of NaBH₄.
- 17. (a) How is quinoline prepared by Skraup synthesis?

(b) Predict the correct products for the following reactions with mechanism:

 $2 \times 2 = 4$

(i)
$$\bigcap_{N}$$
 + CHCl₃ + KOH \longrightarrow ?

(c) Write down three basic principles of green chemistry.

OR

18. (a) How will you carry out the following conversions? 1½×4=6

(i)
$$\bigcirc$$
 CHO \longrightarrow \bigcirc COOH

(ii)
$$\bigcirc$$
 $\stackrel{\text{NH}_2}{\bigcirc}$ \longrightarrow \bigcirc $\stackrel{\text{Cl}}{\bigcirc}$

(iii)
$$\bigcirc$$
 CN \longrightarrow \bigcirc C—NH₂

8D/233 (Turn Over)

HOOC

- (b) What do you mean by atom economy reaction? Cite an example.
- (c) What are microwave assisted reactions?

 $\star\star\star$