5/H-23 (vi) (a) (Syllabus-2015)

2017

(October)

CHEMISTRY

(Honours)

(Chem-H-502)

(Part—A : Physical)

Marks: 37

Time: 2 hours

The figures in the margin indicate full marks for the questions

- 1. (a) Explain Maxwell's law of distribution of molecular velocities. What is the effect of temperature on distribution of molecular velocities?
 - (b) State the law of corresponding states and derive the reduced equation of state.
 - (c) Calculate the root-mean-square velocity of oxygen molecule at 27 °C. (Given: $R = 8.314 \text{ JK}^{-1} \text{ mol}^{-1}$)

3

2

OR

2.	(a)	Discuss the principle of equipartition of energy.	3
	(b)	What is—	
		(i) collision diameter;	
		(ii) collision frequency?	3
	(c)	Estimate the critical temperature of n-hexane if its boiling point is 68.9 °C.	2
	(d)	What is Boyle temperature?	1
3.	(a)	Define surface tension of a liquid. Describe the capillary rise method for determining surface tension of a liquid.	4
* <u>.</u>	(b) _.	The parachors of ethane and propane are 110.5 and 150.8 respectively. What value of parachor is expected for hexane?	2
		OR	
4.	(a)	Derive Clausius-Mosotti equation for non-polar molecules.	4
	(b)	The bond length of H—I is 1.60 Å and its dipole moment is 0.38 D. Calculate the percentage ionic character of H—I bond.	2
8D/ 234		(Continue	d)

(a) Derive Bragg's equation for X-ray diffraction by crystals.	
(ii) Centre of symmetry (iii) Centre of symmetry (iii) Centre of symmetry	
OR	
Explain Frenkel defect and Schottky defect.	
Calculate the angle at which first-order reflection will occur in an X-ray spectrometer, when X-rays of wavelength 1.50 Å are diffracted by the atoms of a crystal. Given that the interplanar distance is 4.04 Å.	•
Define chemical potential. How does chemical potential vary with pressure and temperature?	
Derive Gibbs-Duhem equation for a mixture consisting of <i>i</i> number of components.	
(Turn Over)	
	diffraction by crystals. (b) Define the following elements of symmetry: (i) Plane of symmetry (ii) Axis of symmetry (iii) Centre of symmetry OR (c) Explain Frenkel defect and Schottky defect. (d) Calculate the angle at which first-order reflection will occur in an X-ray spectrometer, when X-rays of wavelength 1.50 Å are diffracted by the atoms of a crystal. Given that the interplanar distance is 4.04 Å. Define chemical potential. How does chemical potential vary with pressure and temperature? Derive Gibbs-Duhem equation for a mixture consisting of i number of components.

OR

law of thermodynamics?

Explain Nernst heat theorem. How does it lead to the enunciation of the third

	(b) /	What do you understand by partial molar quantities? Write the general expression for partial molar quantities of a component <i>i</i> in a mixture.	3
9.	(a)	an engine and 1	4½
	(b)	himologylan and theory of	4½
		OR	
10.	(a)	Write a short note on 'acid-base catalysis' and obtain an expression for rate constant for such reactions.	5
	(b)	Write notes on: 2+2 (i) Consecutive reactions (ii) Chain reactions	=4
	$\mathcal{J}_{\mathcal{H}_{n}}$	***	

8. (a)