5/H-73 (v) (Syllabus-2015)

2017

(October)

COMPUTER SCIENCE

(Honours)

(Operating System and Introduction to LINUX)

(CS-501 T)

Marks: 56

Time: 3 hours

The figures in the margin indicate full marks for the questions

Answer one question from each Unit

UNIT-I

1.	(a)	Explain the objectives of an Operating System.	. 3
	(b)	Explain the four principal events in	l 4

	(6)	computer center. They have estimate running times of 2, 6, 4, 9 and 3 minutes. Use the shortest job first to determine the turnaround time for each job and the mean turnaround time. Assume that only one job at a time runs until it finishes.	5
2.	(a)	Explain race condition. How is it avoided using Potesson's algorithm?	=6
	(b)	How is mutual exclusion taken care of using semaphores?	4
	(c)	What is round robin scheduling?	2
		UNIT—II	
3.	(a)	What are the conditions for a deadlock to occur?	5
	(b)	How is a deadlock detected with one resource of one type?	3
	(c)	How can one recover from a deadlock?	3
4.	(a)	onterentiate.	
	(b)	Explain D.	4
^{8D} /298		resource with the help of an example.	7
		(Continued	1)

UNIT-III

- 5. (a) What is a page fault? How is it handled? Explain with the help of a diagram. 2+5=7
 - (b) Differentiate between physical address space and logical address space. 2+2=4
- 6. (a) If FIFO page replacement algorithm is used with four page frames and eight pages, how many page faults will occur with the reformer string 0172327103?
 - (b) What is segmentation? How is it different from paging? 2+3=5

UNIT-IV

- 7. (a) Explain on the goals of the I/O software.

 Describe in brief the function of a device driver.

 4+3=7
 - (b) Describe the elevator disk arm scheduling algorithm.

4

- 8. (a) Discuss any two file structures.

 Describe contiguous allocation scheme for file storage.

 4+3=7
 - (b) Explain file system backup.

8D/298 (Turn Over)

UNIT--V

 (4)	and a multitasking system?
(b)	In pattern matching, explain the significance of the use of the character

class in a pattern. Describe how to negate the character class. 3+2=5

between

/dev/null and /dev/tty. Write short notes on the following with (b) an example each: 2×3=6

10. (a) Explain the difference

(i) pr (ii) head (iii) sort