5/H-23 (vi) (a) (Syllabus-2015)

2018

(October)

CHEMISTRY (Honours)

(Part-A : Physical)

(Chem-H-502)

Marks: 37

Time: 2 hours

The figures in the margin indicate full marks
for the questions

Letter most

Using Maxwell's law of distribution of molecular velocities, show that the most probable velocity of a molecule is $\sqrt{\frac{2RT}{M}}$,

the terms having their usual meanings.

(b) Explain the following terms:

(i) Degrees of freedom of motion
(ii) Continuity of state

(c) Calculate the root-mean-square velocity of CO_2 molecule at 27 °C. (Given, R = 8.314 J-K⁻¹ mol⁻¹)

)9/102 (Turn Over)

OR

- Define mean free path of a molecule. What are the effects of increase of temperature and pressure on the mean free path?
 - Draw P-V isotherm of carbon dioxide and mention the salient features of the isotherm

3

3

- The van der Waals' constants of a (c) gas are $a = 0.751 \,\mathrm{dm}^6 \,\mathrm{atm} \,\mathrm{mol}^{-2}$ and $b = 0.0226 \,\mathrm{dm^3 \ mol^{-1}}$. Calculate critical volume and critical pressure.
- Describe the method for determination 3. (a) of viscosity by Ostwald's viscometer.
 - Define additive and property constitutive property giving one example for each. 11/2+11/2=3

OR

Define dipole moment. How are dipole moments used to distinguish between cis- and trans-isomers of dichloro-1+2=3

(Continued) D9/102

- Calculate the molar refraction of acetic acid (CH₃COOH) at a temperature at which its density is $1.046 \,\mathrm{g}\,\mathrm{cm}^{-3}$. The observed value of experimentally refractive index at this temperature is 1.3715.
- Describe the powder method for the (a) determination of the crystal structure of sodium chloride.
 - atoms the number (b) contained within (i) a primitive cubic unit cell, (ii) a body-centred cubic unit cell and (iii) a face-centred cubic unit cell.

OR

- Tabulate the seven crystal systems (a) their along with characteristics.
 - Find the interplanar distance in a Crystal in which series of planes (b) produce a first-order reflection from a Copper X-ray tube. Given $\lambda = 1.539$ Å at an angle of 22.5°.
 - Derive an expression for the chemical potential of a component in an ideal

(Turn Over) mixture. ρ9/1**03**

2

$$\left(\frac{\partial T}{\partial V}\right)_{S} = -\left(\frac{\partial P}{\partial S}\right)_{V}$$

(b) Explain the following terms:

(i) Partial molar quantities (ii) Residual entropy

Homogeneous catalysis (ii) Parallel reactions

OR

10. (a)

10. (a) Write a note on consecutive reactions and obtain the rate expression for such reactions.

(b) Explain briefly the following:
$$2^{\times 2^{-4}}$$

Explain briefly the following: Opposing or reversible reactions (ii) Steady-state approximation