, 5/H–24 (vi) (Syllabus–2015)

2018

(October)

PHYSICS

(Honours)

(Electrodynamics, Electronics—II)

[PHY-06 (T)]

Marks: 56

Time: 3 hours

The figures in the margin indicate full marks for the questions

Answer Question No. 1 and any four from the rest

- 1. (a) Given the molecular polarizability and density of helium to be
 - 2.33×10^{-41} farad-m²

and 2.06×10²⁶ molecules/m³ respectively, find the induced dipole

moment per unit volume of helium gas

3

3

when placed in an electric field of $.6 \times 10^5 \text{ V m}^{-1}.$

Assuming that the earth receives solar energy of 1.4×10^3 J m⁻²s⁻², find the amplitudes of the electric and the magnetic fields of the radiation.

(Turn Over) D9/104

- The tank circuit of a Colpitt's oscillator contains an inductor of 20 mH and two capacitors of 200 pF and 300 pF. Assuming sustained oscillations in the output, find its time period.
- (d) Use 2's complement to perform the following binary subtractions: 1½×2=3 (i) 110011 - 100111
 - (ii) 101·1101 101·0111
- State and prove uniqueness theorem. Write down Maxwell's equations for time dependent electromagnetic fields in a material medium at rest and discuss the
- Define (i) polarization vector, (ii) displacement vector and (iii) electric susceptibility. 1+1+1=3

empirical basis of these equations.

- Show that $\vec{D} = \varepsilon_0 \vec{E} + \vec{P}$, where symbols have their usual meanings.
- Discuss the boundary conditions satisfied by \overrightarrow{D} at the interface between two homogeneous dielectrics.

- gauge transformations? (a) What are Discuss the significance and utility of Coulomb's gauges in dealing with 2+5=7 inhomogeneous wave equations.
 - Show that the electric and the magnetic field vectors in an e.m. wave are mutually perpendicular.
- Define Poynting vector and discuss its **5.** (a) physical significance.
- Illustrate with necessary theory the propagation of plane electromagnetic waves in an isotropic dielectric medium. What are FETs? Why is a forward bias. **6.** (a)

7.

(Turn Over)

- not applied to the gate of a JFET? Draw a circuit diagram for obtaining the static characteristics of an n-channel JFET and also draw the typical static 1+2+2=5 characteristics. Using a circuit diagram, explain the
 - *(b)* working of an OP-AMP as an adder. 4 What is meant by CMRR of an OP-AMP? 2 (c)
- With a neat circuit diagram, explain the 7. (a) working of a Hartley's oscillator. Draw an AC equivalent circuit of a Hartley's Obtain an approximate oscillator. frequency of its expression for 3+1+3=7 oscillation.

2. (a)

3

7

4

(Continued)

- (b) What are optical fibres? Explain how light is guided in an optical fibre.
 Mention two practical applications of optical fibres.
- 8. (a) Explain the following statements with at least one example each in FORTRAN:

2×4=8

- (i) FORMAT statement
- (ii) DIMENSION statement
- (iii) IMPLICIT statement
- (b) Explain with example (i) complex constant and (ii) subscripted variables.

Or

- (a) What are formatted and unformatted input statements? Give examples of each. 2+2=4
- (b) What are control statements? How are they classified? 2+2=4
- (c) Explain with illustrative examples the usage of the following FORTRAN statements:

 1½×2=3
 - (i) DO loop statement
 - (ii) Arithmetic IF statement
