5/H-73 (v) (Syllabus-2015)

2019

(October)

COMPUTER SCIENCE

(Honours)

(CS-501 T)

(Operating System and Introduction to LINUX)

Marks: 56

Time: 3 hours

The figures in the margin indicate full marks for the questions

Answer one question from each Unit

UNIT-I

- 1. (a) Describe briefly a process address space.

 3

 (b) What are system calls? Explain briefly
 - (b) What are system calls? Explain briefly the read system call. 2+2=4
 - (c) Five jobs A through E arrive at a computer center. They have estimate running times of 9, 3, 7, 2 and 4 minutes. The arrival time of A through E is 0, 1, 2, 3 and 4 respectively. Use the shortest remaining time next to determine the turnaround time for each job and the mean turnaround time.

(Turn Over)

5

- 2. (a) Discuss the four principal events that cause processes to be created. Compare FCFS with SJF scheduling. 4+2=6
 - (b) What is busy waiting in mutual exclusion? Explain how the mutual exclusion problem is solved using lock variables.

 2+4=6

UNIT-II

- 3. (a) What is a resource? Describe deadlock detection and recovery. 1+4=5
 - (b) Given a total of 10 units of a resource type, and given the state shown below, should process P2 be granted a request of 2 additional resources? Justify your answer:

Process	Used	Max
P1	2	5
P2	1	6
Р3	2	6
P4	1	2
P5	1,	4

(c) Explain on deadlock prevention using attacking the no preemption condition.

(a)	Discuss the Banker's algorithm for a single resource.	6
(b)	Why do operating systems like UNIX and WINDOWS ignore the deadlock problem?	2
(c)	Explain deadlock detection with one resource of one type.	3
	Unit—III	

- 5. (a) Bring out the differences between the $2\frac{1}{2}\times2=5$ following:
 - (i) Pages and Page Frames
 - (ii) Internal Fragmentation and External Fragmentation
 - (b) What do you understand by page fault? Explain the function of a page table. 2+4=6
- 6. (a) Explain on the function of the optimal page replacement algorithm to handle page requests, citing with an example.
 - (b) Compute the number of page faults for the following page requests made of three page frames using the Least Frequently Used Algorithm:

701203042303212

20D/163

4.

4

(Continued)

(Turn Over)

Unit-IV

- 7. (a) Explain the three requirements of using files for longterm information storage.
 - Bring out the differences between sequential file access and random file
 - What is an i-node? Explain the various file attributes that deal with the protection of the file.
- Describe the various categories of I/O
 - Explain any four goals of I/O Software. *(b)*
 - Write a short note on the Elevator Disk Arm Scheduling Algorithm.

Unit-V

- What is the difference between cat a txt and cat > a.txt? Give the syntax of chmod command.
 - What do you understand by command 3+2=5 substitution in UNIX?
 - Explain the use of character class in pattern matching. Give an example. 2+1=3

- Write a shell program that checks 10. (a) whether a given integer number is an Armstrong number or not.
 - Write short notes on the following with (b) an example of each: $2 \times 3 = 6$

5

- (i) head
- (ii) cp

3

4

(iii) mv