5/H-24 (v) (Syllabus-2015)

2019

(October)

PHYSICS

(Honours)

[PHY-05(T)]

(Mathematical Physics, Quantum Mechanics)

Marks: 56

Time: 3 hours

The figures in the margin indicate full marks for the questions

Answer Question No. 1 which is compulsory and any four from the rest

- 1. (a) Define curl of a vector field \vec{A} . When is 1+1=2
 - (b) Show that every eigenvalue of a Hermitian operator is real.
 - (c) Solve $\frac{\partial u}{\partial x} = 4 \frac{\partial u}{\partial y}$ by the method of seperation of variables if $u(0,y) = 8e^{-3y}$
 - (d) Define covariant and contravariant tensors.

(Turn Over)

4

2

20D/141

- 2. (a) State and prove Gauss divergence theorem of a vector function. 1+4=5
 - (b) Show that

$$\int_{S} \vec{B} \cdot \vec{n} \, dS = 0$$

if $\vec{B} = \vec{\nabla} \times \vec{A}$ for any closed surface Sand \hat{n} being the unit normal outward

Find the eigenvalues of the matrix

$$\begin{pmatrix}
\cos\theta & -\sin\theta \\
\sin\theta & \cos\theta
\end{pmatrix}$$
3

3. (a) If f(z) = u(x,y) + iv(x,y) is an analytic function in a domain, then obtain the Cauchy-Riemann conditions

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \quad \frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y}$$

State and prove Cauchy's integral formula. Use this formula to evaluate

$$\int_C \frac{zdz}{\left(9-z^2\right)(z+1)}$$

where C is a circle |z|=2.

3+4=7

3

4. (a) In Legendre's polynomial, use the generating function

$$(1-2xz+z^2)^{-\frac{1}{2}} = \sum_{n=0}^{\infty} z^n P_n(x)$$

to obtain the recurrence relation

$$nP_n = (2n-1)n P_{n-1} - (n-1)P_{n-2}$$

- Obtain the condition of orthoganality of Legendre's polynominal.
- Write down Rodregue's formula for polynomial. Use Legendre's formula to show that

$$P_2(x) = \frac{1}{2} (3x^2 - 1)$$
 1+2=3

4

7

Define gamma function and hence show that

show that

(i)
$$\Gamma n + 1 = n\Gamma n$$
; (ii) $\Gamma \frac{1}{2} = \sqrt{\pi}$ 1+2+2=5

- What is beta function? Obtain the relation between gamma function and 1+5=6 beta function.
- uncertainity Heisenberg's Derive **6.** (a) relation

$$\Delta p_{x} \Delta x \geq \frac{\hbar}{2}$$

by using operator method.

- What is a Hermitian operator? Show that the product of two Hermitian operators is Hermitian only if they 1+3=4 commute.
- (Turn Over)

7. (a) Determine the energy level and the corresponding normalised eigenfunctions of a particle in one-dimensional potential well of the form

 $V(x) = \infty$ for x < 0 and for x > a= 0 for 0 < x < a

What are the boundary conditions for the problem? Is the wave function continuous everywhere? 3+3+1+1=8

- (b) Show that every tensor of second rank can be resolved into symmetric and anti-symmetric tensors.
- 8. (a) Find the values of $[L_x, P_x]$ and $[L^2, L_y]$. $1\frac{1}{2}+1\frac{1}{2}=3$
 - (b) If σ is the Pauli's spin matrix, show that

 $\left[\sigma_{x},\sigma_{y}\right]=2i\sigma_{z}$

(c) Write the Schrödinger equation for hydrogen atom in spherical polar coordinates. Solve the radial part of this equation to obtain the eigenvalues of energy.
