	1/EH–23 (i) (Syllabus–201	.9)	(2)		
2022 (February) CHEMISTRY (Elective/Honours) [Part—A (Theory)] (Inorganic—I, Organic—I, Physical—I)			(c)	If the uncertainties in the measurement of position and momentum are equal, calculate the uncertainty in the measurement of velocity of a particle having mass $9.1 \ 10^{-31}$ kg (<i>h</i> 6.626×10^{-34} J).	
			(d) (e)	What is meant by packing fraction?1What are the factors which influence the ionization energies? $1\frac{1}{2}$	
	[Chem-EH-101] <i>Marks</i> : 56		(f)	State the modern periodic law. 1 OR	
	Time : 3 hours The figures in the margin indicate full marks for the questions		2. (a)	Calculate the uncertainty in the momentum of an electron if it is confined to a linear region of length 1 10^{10} metre. 2	
	SECTION—I (Inorganic—I) (Marks: 19)		(b)	Nickel atom can lose two electrons to form Ni ² ion. The atomic number of Ni is 28. From which orbital will nickel lose two electrons and why? $1\frac{1}{2}$	
1.	 (a) List two limitations of Bohr's atomic model. (b) Explain why orbitals like 1p, 2d and 3f are not possible. 	2 2	(c)	Calculate the binding energy of an -particle. Express the result in MeV : 2 Mass of a proton = 1.0078 a.m.u. Mass of a neutron = 1.0089 a.m.u. Mass of an -particle = 4.0084 a.m.u.	

22D**/110**

22D**/110**

(Continued)

- (d) Explain, why-
 - *(i)* fluorine has a lower electron affinity than chlorine;
 - (ii) the ionic radii decreases as we move across the period in the periodic table. 2+2=4
- 3. (a) Discuss the orbital structures of the following molecules on the basis of hybridization : 2
 - *(i)* NH₃
 - (ii) BeF_2
 - (b) State Fajan's rules to explain the covalent character in an ionic compound. 2
 - (c) Draw molecular orbital energy level diagram for oxygen molecule and calculate the bond order and also comment on its magnetic property. 2¹/₂
 - (d) Define hydrogen bond. What are the different types of hydrogen bond? Give one example of each type.2
 - (e) Explain why LiCl has a higher melting point compared to KCl.1

(4)

OR

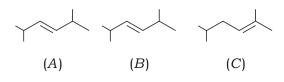
- 4. (a) Using VSEPR theory, explain the geometry of the following molecules : 2
 (i) H₂O
 (ii) BF₃
 (b) Using Born-Haber cycle, calculate the
 - (b) Using Born-Haber cycle, calculate the electron affinity of chlorine atom from the following data : $1\frac{1}{2}$

Bond enthalpy of Cl_2 +240.0 kJ mole ¹ Enthalpy of formation of NaCl(s) = -440.0 kJ mole ¹ Enthalpy of sublimation of Na(s) = 110.0 kJ mole ¹ Enthalpy of ionization of Na(g) = +480.0 kJ mole ¹ Lattice energy of NaCl(s) =

–810·0 kJ mole¹

- (c) Define (i) polarizing power and (ii) polarizability.
- (d) Why H_2O has a higher boiling point than H_2S ? 1
- (e) Explain bond model of metallic bonding. 2
- (f) Explain which of these two molecules CH_4 or CCl_4 has more dipole moment. 1

22D**/110**


22D/110

(Continued)

(Organic—I)

(Marks: 19)

- (a) Draw the molecular orbital picture of formaldehyde giving the shape and the bond angle.
 - (b) The C—C bond in ethane is longer and weaker whereas the C—C bond in acetylene is shorter and stronger. Explain the observation.
 - (c) Arrange the following carbocations in order of decreasing stability giving justification : $1\frac{1}{2}$

- (d) Taking COOH (CHOH)₂COOH as an example, explain the terms diastereomers, enantiomers and *meso*-compounds.
- (e) What is a racemic mixture? Give any one method of resolution of a racemic mixture.

OR

6. (a) Identify (giving justification) the Lewis acid and Lewis base in the following reaction :

$$B(CH_3)_3 + (CH_3)_2NH \longrightarrow (CH_3)_3 \stackrel{\Theta}{\underset{H}{\longrightarrow}} N(CH_3)_2$$

(b) Arrange the following compounds in order of increasing pK_a value with justification : $1\frac{1}{2}$

H₂O, CH₃OH, C₆H₅OH

(c) Amongst the following species, identify the strongest and weakest nucleophile : $1\frac{1}{2}$

OH, CN, C_2H_5O , CH_3COO

- (d) "A chiral compound may not be optically active but an optically active compound is always chiral." Explain. 2¹/₂
- (e) Convert the following Fischer projection into Sawhorse and Newman projections : 2

(Turn Over)

2

3

22D/110

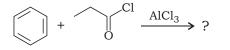
(Continued)

(7)

7. (a) Predict the products of the following reactions : 1×4=4

(*i*)
$$C_6H_5Cl + CH_3CH_2Cl \xrightarrow{Na}$$

Br


$$(ii) \xrightarrow{\text{DI}} \xrightarrow{\text{alc. KOH}} ?$$

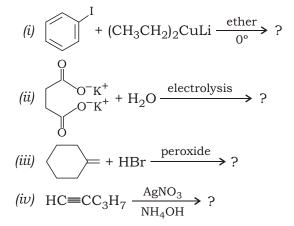
(iii)
$$\longrightarrow$$
 + HI \longrightarrow ?
(iv) \longrightarrow CH₃ $\xrightarrow{H_2O}$ H₂SO₄ ?

- (b) What is Baeyer's strain theory? What are its limitations?
- *(c)* Give the product obtained and the steps involved on ozonolysis of the following compound :

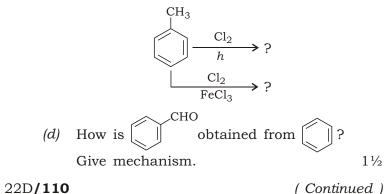
(d) Complete the following reaction with mechanism : $1\frac{1}{2}$

(Turn Over)

?


2

2


(8)

OR

- 8. (a) Discuss the consequences of the presence of either —NH₂ or the —OMe group on the electrophilic substitution of the benzene ring.
 2
 - (b) Predict the products of the following reactions : 1×4=4

(c) Complete the following reactions giving mechanism :

SECTION-III

(Physical—I)

(*Marks* : 18)

- **9.** (a) Derive van der Waals' equation of state for real gases.
 - (b) Deduce Boyle's law from kinetic gas equation.
 - (c) Define (i) Boltzmann constant and
 (ii) compressibility factor. 1¹/₂+1¹/₂=3

OR

- 10. (a) Define coefficient of viscosity. What is the effect of temperature on viscosity?2+1=3
 - (b) What are liquid crystals? Mention the types of liquid crystals. 1+3=4
 - (c) Write down the expression for virial equation of state of a real gas. 2
- **11.** (*a*) Explain the law of constancy of interfacial angles.

(10)

- (b) Derive the expression for rate constant of second-order reaction where both the reactants are same.4
- (c) Define (i) vacancy defects and (ii) interstitial defects with examples. $1\frac{1}{2}+1\frac{1}{2}=3$

OR

- **12.** (a) Discuss the effect of temperature on reaction rates. 2
 - (b) A crystal plane has intercepts on the three axes of crystal in the ratio of $1:2:\frac{3}{2}$. What are the Miller indices of the plane? 2
 - (c) Define pseudo-unimolecular reactions with suitable example.2
 - (d) Explain how an order of a reaction is experimentally determined (any one method).
 - $\star\star\star$

2

4