2022

(February)

CHEMISTRY
(Elective/Honours)

[Part-A (Theory)]

(Inorganic-I, Organic-I, Physical-I)

[Chem-EH-101]

Marks : 56

Time : 3 hours
The figures in the margin indicate full marks for the questions

> SECTION-I
(Inorganic-I)
(Marks : 19)

1. (a) List two limitations of Bohr's atomic model.
(b) Explain why orbitals like $1 p, 2 d$ and $3 f$ are not possible.
(c) If the uncertainties in the measurement of position and momentum are equal, calculate the uncertainty in the measurement of velocity of a particle having mass $9.1 \times 10^{-31} \mathrm{~kg}$ $\left(h=6 \cdot 626 \times 10^{-34} \mathrm{~J}\right)$.
(d) What is meant by packing fraction?
(e) What are the factors which influence the ionization energies?
(f) State the modern periodic law.

OR

2. (a) Calculate the uncertainty in the momentum of an electron if it is confined to a linear region of length 1×10^{-10} metre.
(b) Nickel atom can lose two electrons to form Ni^{2+} ion. The atomic number of Ni is 28 . From which orbital will nickel lose two electrons and why?
(c) Calculate the binding energy of an α-particle. Express the result in MeV :
(d) Explain, why-
(i) fluorine has a lower electron affinity than chlorine;
(ii) the ionic radii decreases as we move across the period in the periodic table. $\quad 2+2=4$
3. (a) Discuss the orbital structures of the following molecules on the basis of hybridization :
(i) NH_{3}
(ii) BeF_{2}
(b) State Fajan's rules to explain the covalent character in an ionic compound.
(c) Draw molecular orbital energy level diagram for oxygen molecule and calculate the bond order and also comment on its magnetic property. $2 \frac{1}{2}$
(d) Define hydrogen bond. What are the different types of hydrogen bond? Give one example of each type.
(e) Explain why LiCl has a higher melting point compared to KCl .

1

OR

4. (a) Using VSEPR theory, explain the geometry of the following molecules :
(i) $\mathrm{H}_{2} \mathrm{O}$
(ii) BF_{3}
(b) Using Born-Haber cycle, calculate the electron affinity of chlorine atom from the following data :

Bond enthalpy of $\mathrm{Cl}_{2}=$

$$
+240 \cdot 0 \mathrm{~kJ} \mathrm{~mole}^{-1}
$$

Enthalpy of formation of $\mathrm{NaCl}(\mathrm{s})=$

$$
-440 \cdot 0 \mathrm{~kJ} \text { mole }{ }^{-1}
$$

Enthalpy of sublimation of $\mathrm{Na}(\mathrm{s})=$

$$
+110 \cdot 0 \mathrm{~kJ} \mathrm{~mole}^{-1}
$$

Enthalpy of ionization of $\mathrm{Na}(\mathrm{g})=$

$$
+480 \cdot 0 \mathrm{~kJ} \mathrm{~mole}^{-1}
$$

Lattice energy of $\mathrm{NaCl}(\mathrm{s})=$

$$
-810 \cdot 0 \mathrm{~kJ} \mathrm{~mole}^{-1}
$$

(c) Define (i) polarizing power and (ii) polarizability.
(d) Why $\mathrm{H}_{2} \mathrm{O}$ has a higher boiling point than $\mathrm{H}_{2} \mathrm{~S}$?
(e) Explain bond model of metallic bonding.
(f) Explain which of these two molecules CH_{4} or CCl_{4} has more dipole moment.

Section-il

(Organic-I)
(Marks : 19)
5. (a) Draw the molecular orbital picture of formaldehyde giving the shape and the bond angle.
(b) The $\mathrm{C}-\mathrm{C}$ bond in ethane is longer and weaker whereas the $\mathrm{C}-\mathrm{C}$ bond in acetylene is shorter and stronger Explain the observation.
(c) Arrange the following carbocations in order of decreasing stability giving justification :

(A)

(B)

(C)
(d) Taking $\mathrm{COOH}(\mathrm{CHOH})_{2} \mathrm{COOH}$ as an example, explain the terms diastereomers, enantiomers and mesocompounds.
(e) What is a racemic mixture? Give any one method of resolution of a racemic mixture.

OR

6. (a) Identify (giving justification) the Lewis acid and Lewis base in the following
reaction :

(b) Arrange the following compounds in order of increasing $\mathrm{p} K_{\mathrm{a}}$ value with justification :

$$
\mathrm{H}_{2} \mathrm{O}, \mathrm{CH}_{3} \mathrm{OH}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}
$$

(c) Amongst the following species, identify the strongest and weakest nucleophile : $11 / 2$

$$
{ }^{-} \mathrm{OH},{ }^{-} \mathrm{CN}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}^{-}, \mathrm{CH}_{3} \mathrm{COO}^{-}
$$

(d) "A chiral compound may not be optically active but an optically active compound is always chiral." Explain.
(e) Convert the following Fischer projection into Sawhorse and Newman projections :

22D/110
7. (a) Predict the products of the following reactions : $1 \times 4=4$
(i) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Cl} \xrightarrow[\text { Dry ether }]{\mathrm{Na}}$?
(ii)

(iii)

(iv) $\xrightarrow[\mathrm{H}_{2} \mathrm{SO}_{4}]{\mathrm{H}_{2} \mathrm{O}}$?
(b) What is Baeyer's strain theory? What are its limitations?
(c) Give the product obtained and the steps involved on ozonolysis of the following compound :

(d) Complete the following reaction with mechanism :

8. (a) Discuss the consequences of the presence of either $-\mathrm{NH}_{2}$ or the -OMe group on the electrophilic substitution of the benzene ring.
(b) Predict the products of the following reactions :
$1 \times 4=4$
(i) $+\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{2} \mathrm{CuLi} \xrightarrow[0^{\circ}]{\text { ether }}$?
(ii)

(iii)

(iv) $\mathrm{HC} \equiv \mathrm{CC}_{3} \mathrm{H}_{7} \xrightarrow[\mathrm{NH}_{4} \mathrm{OH}]{\mathrm{AgNO}_{3}}$?
(c) Complete the following reactions giving mechanism :

(d) How is
 obtained from
 Give mechanism.

SECTION-III

(Physical-I)

(Marks : 18)
9. (a) Derive van der Waals' equation of state for real gases.
(b) Deduce Boyle's law from kinetic gas equation.
(c) Define (i) Boltzmann constant and (ii) compressibility factor. $11 / 2+1 \frac{1}{2}=3$

OR

10. (a) Define coefficient of viscosity. What is the effect of temperature on viscosity?

$$
2+1=3
$$

(b) What are liquid crystals? Mention the types of liquid crystals.
(c) Write down the expression for virial equation of state of a real gas.
11. (a) Explain the law of constancy of interfacial angles.
(b) Derive the expression for rate constant of second-order reaction where both the reactants are same.
(c) Define (i) vacancy defects and (ii) interstitial defects with examples.

OR

12. (a) Discuss the effect of temperature on reaction rates.
(b) A crystal plane has intercepts on the three axes of crystal in the ratio of $1: 2: \frac{3}{2}$. What are the Miller indices of the plane?
(c) Define pseudo-unimolecular reactions with suitable example.
(d) Explain how an order of a reaction is experimentally determined (any one method).
