2022

(February)

CHEMISTRY

(Elective/Honours)

(General Chemistry-I)

[Chem-EH-101]
Marks : 56
Time : 3 hours
The figures in the margin indicate full marks for the questions

SECTION-I

(Inorganic)

(Marks : 19)

1. (a) Write down the limitations of the Bohr's atomic model.
(b) Mention the physical significance of ψ and ψ^{2}. How many corresponding radial nodes are possible for $1 \mathrm{~s}, 2 \mathrm{~s}$ and $3 s$ orbitals?
(c) Calculate the binding energy per nucleon in helium atom ${ }_{2} \mathrm{He}^{4}$ which has a mass of 4.00260 a.m.u. Mass of 1 neutron $=1 \cdot 008665$ a.m.u. Mass of 1 hydrogen atom $=1.007825$ a.m.u. Express the results in joules.

$$
\left(1 \mathrm{MeV}=1.602 \times 10^{-13} \mathrm{~J}\right)
$$

(d) Write down the first-order rate equation of radioactive disintegration mentioning the terms involved in it.
(e) Define the terms 'atomic' and 'ionic radii'. Explain why the ionic radius of K^{+}is smaller than that of Cl^{-}, although both are isoelectronic.

OR

2. (a) State and explain Pauli's exclusion principle. For a given shell $n=2$, write down the possible values of l and m.

$$
1+1=2
$$

(b) Calculate the effective nuclear charge experienced by the s electron in potassium atom.
(c) Half-life of radium (atomic mass 226) is 1580 years. Show that 1 g of radium gives 3.70×10^{10} disintegration per second.
(d) Mention the unit expressed for radioactivity.

$11 / 2$

(e) Define the term 'diagonal relationship'. Explain how the similarities between Li and Mg arise. $1 / 2+1 \frac{1}{2}=2$
3. (a) What are the limitations of the valence bond theory?
(b) Discuss the hybridization state and geometry of the following molecules :

$$
1+1=2
$$

(i) SF_{4}
(ii) $\mathrm{H}_{2} \mathrm{~S}$
(c) Draw the molecular orbital energy-level diagram for O_{2} molecule and discuss the magnetic behaviour of $\mathrm{O}_{2}, \mathrm{O}_{2}^{-}, \mathrm{O}_{2}^{2-}$ and O_{2}^{+}.
$11 / 2+11 / 2=3$
(d) Giving appropriate reasons, state whether Pb^{2+} or Pb^{4+} will have greater polarizing power.
(e) Discuss metallic bonding with the help of band theory.

OR
4. (a) On the basis of VSEPR theory, predict the shape of the following molecules :

$$
1+1=2
$$

(i) BeF_{2}
(ii) BF_{3}
(b) CO_{2} has a net zero dipole moment but $\mathrm{H}_{2} \mathrm{O}$ has some values of dipole moment. Explain.
(c) What is radius ratio? For an ionic solid with radius ratio in the range $0 \cdot 155-0 \cdot 225$, write down the probable geometry or structural arrangement and the coordination number. $1+1=2$
(d) "The boiling points of HF and HCl are 293 K and 189 K respectively." Explain the above observations.
(e) What is lattice energy of an ionic solid? Mention the factors on which the lattice energy is dependent.

SECTION-II

(Organic)

(Marks : 19)
5. (a) Indicate the type of hybridization of the carbon atoms in each of the following compounds :
(i) $\mathrm{H}-\stackrel{\mathrm{O}}{\mathrm{C}}-\mathrm{H}$
(ii) $\mathrm{H}-\mathrm{C} \equiv \mathrm{N}$
(iii) $\mathrm{CH}_{2}=\mathrm{C}=\mathrm{O}$
(b) Draw the molecular orbital picture of BF_{3} and explain its acidic character on this basis.
(c) Explain why $\mathrm{p} K_{\mathrm{a}}$ of 2-chloroacetic acid is less than that of 3 -chloropropanoic acid.
(d) Explain the optical inactivity of mesotartaric acid.
(e) Which of the following carbocations is more stable and why?

$$
\mathrm{C}_{6} \mathrm{H}_{5} \stackrel{+}{\mathrm{C}} \mathrm{H}_{2} \text { or } \mathrm{CH}_{3} \stackrel{+}{\mathrm{C}} \mathrm{H}_{2}
$$

OR
6. (a) Account for the following facts : $11 / 2 \times 2=3$
(i) $\mathrm{H} \dot{\mathrm{N}}=\stackrel{\mathrm{N}}{\mathrm{C}}-\mathrm{N}_{2} \mathrm{~N}_{2}$ is a strong base.
(ii) p-hydroxybenzoic acid has a higher melting point than o-hydroxybenzoic acid.
(b) Convert the following Fischer projection formula to Sawhorse and Newman projection formula :

(c) Arrange the following carbanions in order of increasing stability with appropriate reasons :

$$
\begin{gathered}
\mathrm{CH}_{2}=\mathrm{CH}-\stackrel{\ominus}{\mathrm{C}} \mathrm{H}_{2}, \mathrm{CH}_{3} \mathrm{CH}_{2} \stackrel{\ominus}{\mathrm{C}} \mathrm{H}_{2}, \\
\mathrm{CH}_{3} \stackrel{\ominus}{\mathrm{C}} \mathrm{HCH}_{3}
\end{gathered}
$$

(d) Draw the E and Z isomers of methyl phenyl ketoxime.
(e) Arrange ethane, ethene and ethyne in order of increasing $\mathrm{C}-\mathrm{C}$ bond strength.
7. (a) Complete the following reactions : $1 \times 4=4$
(i) $\mathrm{CH}_{3} \mathrm{COO}^{-} \mathrm{K}^{+} \xrightarrow[\text { Electrolyzed }]{\text { Aqueous solution }}$?
(ii) $\mathrm{CH}_{3} \mathrm{C} \equiv \mathrm{CH}+\mathrm{H}_{2} \mathrm{O} \xrightarrow[60^{\circ} \mathrm{C}-80^{\circ} \mathrm{C}]{\xrightarrow{\mathrm{Hg}^{2+}}, \mathrm{H}_{2} \mathrm{SO}_{4}}$?
(iii) $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}_{2}+\mathrm{HOCl} \longrightarrow$?
(iv) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Br}+\mathrm{Na}+\mathrm{CH}_{3} \mathrm{Br} \xrightarrow{\text { Dry ether }}$?
(b) Discuss the relative reactivities of methane and ethane in halogenation. $1 \frac{1}{2}$
(c) How is benzene converted to acetophenone? Discuss the mechanism involved in the conversion.
(d) Explain why cyclohexane unlike lower cycloalkanes is resistant to hydrogenation reaction.
(e) What happens when n-heptane is passed over $\mathrm{Cr}_{2} \mathrm{O}_{3}$ supported over alumina at $600^{\circ} \mathrm{C}$? Give the relevant chemical equation.

OR

8. (a) Explain why peroxide effect is for HBr and not for HCl .
(b) Complete the following reactions : $1 \frac{1}{2} \times 2=3$
(i) $\mathrm{RCH}=\mathrm{CH}_{2} \xrightarrow{\mathrm{~B}_{2} \mathrm{H}_{6}}$? $\xrightarrow{\mathrm{H}_{2} \mathrm{O}_{2} / \mathrm{OH}^{-}}$?
(ii) $\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{C}-\mathrm{H}+\mathrm{O}_{3} \longrightarrow$? $\xrightarrow{\mathrm{H}_{2} \mathrm{O}}$? + ?
(c) What is Hückel's $(4 n+2)$ rule? Using this rule, indicate whether the following species are aromatic or non-aromatic :

(d) Complete the following reaction with mechanism :

(e)

Explain why

group is
meta-directing in electrophilic substitution reaction. $11 / 2$

SECTION-III

(Physical)

(Marks : 18)
9. (a) Derive the kinetic gas equation $P V=\frac{1}{3} m n \bar{c}^{2}$ from kinetic theory of gases.
(b) Define surface tension of a liquid. What is its unit in SI system? $\quad 1+1=2$
(c) Calculate the root-mean-square speed of oxygen gas at $27^{\circ} \mathrm{C}$. Express it in SI and CGS units. $2+1=3$

OR

10. (a) What are the reasons that led to the deviation of real gases from ideal behaviour? What is meant by compressibility factor Z ? $2+1=3$
(b) Deduce Boyle's law and Charles' law from kinetic gas equation. $\quad 1 \frac{1}{1} 2+1 \frac{1}{2}=3$
(c) Explain the following terms : $1 \frac{1}{2}+1 \frac{1}{2}=3$
(i) Liquid crystals
(ii) Viscosity
11. (a) State and explain the law of rational indices.
(b) What are meant by space lattice and unit cell?
$1+1=2$
(c) Explain Schottky defect and Frenkel defect in crystals.
$2+2=4$
(d) A crystal plane has intercepts on the three axes of crystal in the ratio of $\frac{3}{2}: 2: 1$. Calculate the Miller indices of the plane.

OR

12. (a) What are colloids? Differentiate between lyophilic and lyophobic colloids. $1+2=3$
(b) Explain the phenomenon of Tyndall effect in colloidal solution.
(c) Explain the following : $1 \frac{1}{2}+1 \frac{1}{2}=3$
(i) Protective colloids
(ii) Dialysis
