1/EH-23 (i) (Syllabus-2015)		s–2015)	(2)			
		2022 (February)		(c)	Calculate the binding energy per nucleon in helium atom $_2$ He ⁴ which has a mass of 4.00260 a.m.u. Mass of 1 neutron 1 008665 a.m.u.	
		CHEMISTRY			Mass of 1 hydrogen atom 1 007825 a.m.u.	
		(Elective/Honours)			Express the results in joules. (1 MeV 1 602 10 13 J) 2	
		(General Chemistry—I) [Chem-EH-101]		(d)	Write down the first-order rate equationof radioactive disintegration mentioningthe terms involved in it.1	
	771	Marks : 56 Time : 3 hours		(e)	Define the terms 'atomic' and 'ionic radii'. Explain why the ionic radius of K is smaller than that of Cl , although both are isoelectronic. $2\frac{1}{2}$:
The figures in the margin indicate full marks for the questions			arks	OR		
		SECTION—I (Inorganic)		2. (a)	State and explain Pauli's exclusion principle. For a given shell $n = 2$, write down the possible values of l and m .	
		(<i>Marks</i> : 19)		<i>(b)</i>	1+1=2 Calculate the effective nuclear charge	
1.	(a)	Write down the limitations of Bohr's atomic model.	the 2	(D)	experienced by the s electron in potassium atom. 2	
	(b)	Mention the physical significant and ² . How many correspon- radial nodes are possible for 1s, 2s 3s orbitals?	nding	(c)	Half-life of radium (atomic mass 226) is 1580 years. Show that 1 g of radium gives 3 70 10^{10} disintegration per second.	
2D,	/111	(Tu	urn Over)	22D /111	(Continued)	1

22D**/111**

(3)

- (d) Mention the unit expressed for radioactivity. $1\frac{1}{2}$
- (e) Define the term 'diagonal relationship'. Explain how the similarities between Li and Mg arise. $\frac{1}{2}+1\frac{1}{2}=2$
- **3.** (a) What are the limitations of the valence bond theory? $1\frac{1}{2}$
 - (b) Discuss the hybridization state and geometry of the following molecules :
 - 1+1=2

- *(i)* SF₄
- *(ii)* H₂S
- (c) Draw the molecular orbital energy-level diagram for O_2 molecule and discuss the magnetic behaviour of O_2 , O_2 , O_2^2 and O_2 . $1\frac{1}{2}+1\frac{1}{2}=3$
- (d) Giving appropriate reasons, state whether Pb^2 or Pb^4 will have greater polarizing power. $1\frac{1}{2}$
- (e) Discuss metallic bonding with the help of band theory. $1\frac{1}{2}$

OR

- 4. (a) On the basis of VSEPR theory, predict the shape of the following molecules : 1+1=2
 - (i) BeF₂
 - *(ii)* BF₃
 - (b) CO_2 has a net zero dipole moment but H_2O has some values of dipole moment. Explain. $1\frac{1}{2}$
 - (c) What is radius ratio? For an ionic solid with radius ratio in the range 0.155-0.225, write down the probable geometry or structural arrangement and the coordination number. 1+1=2
 - (d) "The boiling points of HF and HCl are 293 K and 189 K respectively."Explain the above observations. 2
 - (e) What is lattice energy of an ionic solid? Mention the factors on which the lattice energy is dependent. 1+1=2

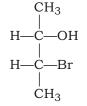
- SECTION—II (Organic)
- (*Marks* : 19)
- **5.** (a) Indicate the type of hybridization of the carbon atoms in each of the following compounds :
 - о (*i*) н—С—н
 - (ii) H—C≡N
 - (iii) $CH_2 = C = O$
 - (b) Draw the molecular orbital picture of BF_3 and explain its acidic character on this basis. $1\frac{1}{2}$
 - (c) Explain why pK_a of 2-chloroacetic acid is less than that of 3-chloropropanoic acid.
 - (d) Explain the optical inactivity of mesotartaric acid.
 - (e) Which of the following carbocations is more stable and why?2

22D/111

(Turn Over)

2

2


2

(6)

OR

- **6.** (a) Account for the following facts : $1\frac{1}{2}\times2=3$ $\dot{N}H_2$ (i) $H\dot{N}=C-\dot{N}H_2$ is a strong base.
 - *(ii) p*-hydroxybenzoic acid has a higher melting point than *o*-hydroxybenzoic acid.
 - (b) Convert the following Fischer projection formula to Sawhorse and Newman projection formula :

2

- (c) Arrange the following carbanions in order of increasing stability with appropriate reasons : 1½
 CH2=CH−CH2, CH3CH2CH2,
 CH3CHCH3
 (d) Draw the E and Z isomers of methyl phenyl ketoxime. 2
 (e) Arrange ethane, ethene and ethyne in order of increasing C−C bond strength. 1
- 22D**/111**

 $C_6H_5CH_2$ or CH_3CH_2

(7)

(a)	Complete the following reactions : 1×4=4				
	(<i>i</i>) $CH_3COO^-K^+$ Aqueous solution \rightarrow ? Electrolyzed				
	(<i>ii</i>) $CH_3C \equiv CH + H_2O \xrightarrow{Hg^{2+}, H_2SO_4}{60^{\circ}C - 80^{\circ}C}$?				
	(iii) $CH_3CH=CH_2 + HOC1 \longrightarrow ?$				
	(iv) $C_6H_5Br + Na + CH_3Br \xrightarrow{Dry ether}$?				
(b)	Discuss the relative reactivities of methane and ethane in halogenation. $1\frac{1}{2}$				
(c)	How is benzene converted to acetophenone? Discuss the mechanism involved in the conversion. 2				
(d)	Explain why cyclohexane unlike lower cycloalkanes is resistant to hydrogenation reaction. 1				
(e)	What happens when <i>n</i> -heptane is passed over Cr_2O_3 supported over alumina at 600 °C? Give the relevant chemical equation. 1				
	OR				

8. (a) Explain why peroxide effect is for HBr and not for HCl. 1¹/₂

- (8)
- (b) Complete the following reactions : $1\frac{1}{2}\times2=3$ (i) RCH=CH₂ $\xrightarrow{B_2H_6}$? $\xrightarrow{H_2O_2/OH}$?
 - (ii) CH₃—C=C—H + O₃ \longrightarrow ? $\xrightarrow{H_2O}$? + ?
- (c) What is Hückel's $(4n \ 2)$ rule? Using this rule, indicate whether the following species are aromatic or non-aromatic : $1\frac{1}{2}$

(d) Complete the following reaction with mechanism : 2

 $+ CO + HC1 \xrightarrow{AlCl_3} ?$

(e) Explain why
$$\parallel \ C-H$$
 group is

meta-directing in substitution reaction.

electrophilic $1\frac{1}{2}$

22D**/111**

7.

(Turn Over)

22D**/111**

(*Marks* : 18)

- **9.** (a) Derive the kinetic gas equation $PV = \frac{1}{3}mn\bar{c}^2$ from kinetic theory of gases.
 - (b) Define surface tension of a liquid. What is its unit in SI system? 1+1=2
 - (c) Calculate the root-mean-square speed
 of oxygen gas at 27 °C. Express it in
 SI and CGS units. 2+1=3

OR

- 10. (a) What are the reasons that led to the deviation of real gases from ideal behaviour? What is meant by compressibility factor Z?
 - (b) Deduce Boyle's law and Charles' law from kinetic gas equation. $1\frac{1}{2}+1\frac{1}{2}=3$
 - (c) Explain the following terms : $1\frac{1}{2}+1\frac{1}{2}=3$
 - (i) Liquid crystals
 - (ii) Viscosity

(10)

11. (a) State and explain the law of rational indices. 2
(b) What are meant by space lattice and unit cell? 1+1=2
(c) Explain Schottky defect and Frenkel defect in crystals. 2+2=4
(d) A crystal plane has intercepts on the three axes of crystal in the ratio of

OR

of the plane.

 $\frac{3}{2}$: 2:1. Calculate the Miller indices

- **12.** (*a*) What are colloids? Differentiate between lyophilic and lyophobic colloids. 1+2=3
 - (b) Explain the phenomenon of Tyndall effect in colloidal solution. 3
 - (c) Explain the following : 1¹/₂+1¹/₂=3
 (i) Protective colloids
 (ii) Dialysis

$\star\star\star$

22D**/111**

4

1