2022

(February)

MATHEMATICS

(Elective/Honours)
(Algebra-I and Calculus-I)
(GHS-11)
Marks : 75
Time : 3 hours
The figures in the margin indicate full marks for the questions

Answer five questions, taking one from each unit
UnIT—I

1. (a) Find the domain of the function

$$
f(x)=\frac{1}{\sqrt{|x|-x}}
$$

(b) If $f(x)=\frac{x-1}{x+1}$, show that

$$
\frac{f(x)-f(y)}{1+f(x) f(y)}=\frac{x-y}{1+x y}
$$

(c) Draw the graph of the function $f(x)=[x]$, where $[x]$ denotes the greatest integer not greater than x.
(d) Let $f(x)=|x|$, show that

$$
\operatorname{Lt}_{h \rightarrow 0} \frac{f(h)-f(0)}{h}
$$

does not exist.
(e) Examine the continuity of the function f given as in Q . No. $\mathbf{1}(d)$ on \mathbb{R}.
2. (a) Which of the following statements are true?
For a set A
(i) $A \in P(A)$
(ii) $A \subset P(A)$
(iii) $\{A\} \in P(A)$
(iv) $\{A\} \subset P(A)$
(b) Prove that for any two sets A and B $A-B=A \cap B^{C}$.
(c) Show that

$$
\lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2}}=1
$$

(d) If R is a relation on $\mathbb{Z}-\{0\}$ and $x R y$ if and only if $x y>0$, prove that R is an equivalence relation.
(e) If A and B are two sets and $A \times A=B \times B$, then prove that $A=B$.
(f) $f: Q \rightarrow Q$ is defined by $f(x)=3 x-4$. Show that f is invertible and find f^{-1}.
UNIT—II
3. (a) Define, with example, the following terms :
$2 \times 3=6$
(i) Symmetric matrix
(ii) Skew-symmetric matrix
(iii) Diagonal matrix
(b) Reduce the matrix A to the normal form and find its rank, where

$$
A=\left[\begin{array}{rrrr}
1 & 0 & 2 & 1 \\
0 & 1 & -2 & 1 \\
1 & -1 & 4 & 0 \\
-2 & 2 & 8 & 0
\end{array}\right]
$$

6
(c) Let A and B are Hermitian matrices, show that $A B+B A$ is Hermitian.
4. (a) Examine if the following system of equations are consistent :

$$
\begin{array}{r}
x-y+2 z=4 \\
3 x+y+4 z=6 \\
x+y+z=1
\end{array}
$$

If consistent, solve the system. $3+4=7$
(b) Using elementary operation find the inverse of the matrix A, where

$$
A=\left[\begin{array}{lll}
1 & 0 & 2 \\
2 & 1 & 0 \\
3 & 2 & 1
\end{array}\right]
$$

(c) Show that the matrix

$$
A=\left[\begin{array}{rrr}
2 & -2 & -4 \\
-1 & 3 & 4 \\
1 & -2 & -3
\end{array}\right]
$$

is idempotent.
Unit—III
5. (a) State the intermediate value theorem.

Prove that the equation $x^{4}-x^{3}-3=0$
has a real root between 1 and 2 . $2+1=3$
(b) Evaluate $\frac{d y}{d x}$ of any two of the following:
where
(i) $x^{y} y^{x}=1$
(ii) $x=\sqrt{1+u}, y=\sqrt{1-u}$
(iii) $y=\tan ^{-1} \sqrt{\frac{1-\cos \theta}{1+\cos \theta}}$
(c) Find the points on the curve

$$
y=2 x^{3}-15 x^{2}+34 x-20
$$

where the tangents are parallel to $y+2 x=0$
(d) From the first principle obtain the derivative of $\frac{1}{\sqrt{x}}$.
6. (a) If the area of a circle increases at a uniform rate, prove that the rate of increase of the perimeter varies inversely as the radius.
(b) Evaluate :
$21 / 2 \times 2=5$
(i) $\operatorname{Ltt}_{x \rightarrow 0}\left[\frac{1}{x^{2}}-\frac{1}{\sin ^{2} x}\right]$
(ii) $\operatorname{Lt}_{x \rightarrow 0} \frac{e^{x}+\sin x-1}{\log (1+x)}$
(c) If $y=\tan ^{-1} x$, show that
(i) $\left(1+x^{2}\right) y_{1}=1$
(ii) $\left(1+x^{2}\right) y_{n+1}+2 n x y_{n}+n(n-1) y_{n-1}=0$

Find also $\left(y_{n}\right)_{0}$.
$11 / 2+31 / 2+2=7$
Unit-IV
7. (a) Evaluate any two of the following : $3 \times 2=6$
(i) $\int \frac{d \theta}{5+4 \cos \theta}$
(ii) $\int \frac{d x}{x(x+1)^{2}}$
(iii) $\int \sqrt{2 a x-x^{2}} d x$
(b) Show that

$$
\begin{equation*}
\int_{0}^{\frac{\pi}{2}} \sin ^{6} \theta \cos ^{3} \theta d \theta=\frac{2}{63} \tag{3}
\end{equation*}
$$

(c) Find by method of summation

$$
\int_{0}^{1} x^{3} d x
$$

(d) Evaluate, if possible,

$$
\begin{equation*}
\int_{0}^{\pi} \frac{d x}{1+\cos x} \tag{3}
\end{equation*}
$$

8. (a) Show that

$$
\int_{0}^{\pi} x \log \sin x d x=\frac{\pi^{2}}{2} \log \frac{1}{2}
$$

(b) Evaluate :

$$
\operatorname{Lt}_{n \rightarrow \infty}\left[\frac{1^{2}}{n^{3}+1^{3}}+\frac{2^{2}}{n^{3}+2^{3}}+\cdots+\frac{n^{2}}{2 n^{3}}\right]
$$

(c) If $u_{n}=\int_{0}^{\frac{\pi}{2}} x^{n} \sin x d x, n>0$, prove that

$$
\begin{equation*}
u_{n}+n(n-1) u_{n-2}=n\left(\frac{\pi}{2}\right)^{n-1} \tag{5}
\end{equation*}
$$

(d) Evaluate :

2

$$
\int_{0}^{1} x^{3} \sqrt{1+3 x^{4}} d x
$$

UniT-V
9. (a) All the circles which touch the Y-axis at the origin is given by the equation $x^{2}+y^{2}=2 c x$. Obtain the differential equation of the family.
(b) Solve any four of the following : $\quad 3 \times 4=12$
(i) $(3 y+2 x+4) d x=(4 x+6 y+5) d y$
(ii) $x^{2} d y+\left(x y+2 y^{2}\right) d x=0$
(iii) $3 e^{x} \tan y d x+\left(1-e^{x}\right) \sec ^{2} y d y=0$
(iv) $x d y-y d x=\cos \frac{1}{x} d x$
(v) $x\left(x^{2}+y^{2}+4\right) d x+y\left(x^{2}-y^{2}+9\right) d y=0$
(vi) $\left(1+y^{2}\right) d x=\left(\tan ^{-1} y-x\right) d y$
10. (a) Solve any two of the following : $21 / 2 \times 2=5$
(i) $p\left(p^{2}+x y\right)=p^{2}(x+y)$
(ii) $y=2 p x+p^{2}$
(iii) $p^{2}-p y+x=0$
(p stands for $\frac{d y}{d x}$)
(b) Find the orthogonal trajectories of the family of confocal conics

$$
\frac{x^{2}}{a^{2}+\lambda}+\frac{y^{2}}{b^{2}+\lambda}=1
$$

λ is a parameter.
(c) Reduce the equation $(p x-y)(x-p y)=2 p$ to Clairaut's form by the substitution $x^{2}=u, y^{2}=v$.
(d) Solve any two of the following : $2 \times 2=4$
(i) $\frac{d^{2} y}{d x^{2}}+8 \frac{d y}{d x}+25 y=0$
(ii) $\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+y=0$
(iii) $\frac{d^{2} y}{d x^{2}}+6 \frac{d y}{d x}+25 y=0$

