1/EH-28 (i) (Syllabus-2015)

2022

(February)

STATISTICS

(Elective/Honours)

(Descriptive Statistics, Numerical Analysis and Probability)

[STEH-1 (TH)]

Marks : 56

Time : 3 hours

The figures in the margin indicate full marks for the questions

Answer five questions, selecting one from each Unit

Unit—I

1 (a) A person covers from place A to place B by cycling at a speed of 12 km per hour and returning back from place B to place A at a speed of 16 km per hour. Obtain the average speed of that person in the whole journey.

22D/116

(Turn Over)

5

(2)

(b) Let X_{1i} is one series with size n_1 and geometric mean G_1 and X_{2j} is another series with size n_2 and geometric mean G_2 . Obtain the geometric mean of combined series.

5

- (c) Obtain simple and weighted arithmetic mean of the first n natural numbers, the weights being the corresponding numbers.2
- **2.** (a) Differentiate between primary and secondary data. $2\frac{1}{2}$
 - (b) Write short notes on the following : $4\frac{1}{2}$
 - *(i)* Frequency distribution
 - (ii) Frequency curve
 - (c) Compare mean, median and mode as measures of location of a distribution. 5

Unit—II

- 3. (a) What is regression? What do you mean by 'lines of regression'?
 (b) Write the regression equations of Y on X
 - and X on Y. Also write the properties of regression coefficient. 4
 - (c) Write a note on intra-class correlation coefficient. 4

```
22D/116 (Continued)
```

(3)

4.	(a)	Derive	coefficient	of	partial	correlation.	$7\frac{1}{2}$

- (b) Explain the properties of multiple correlation coefficient. 2
- (c) Obtain multiple correlation in terms of total and partial correlations. $1\frac{1}{2}$

Unit—III

5. (a) If third-order differences are constant, prove that

$$\int_{0}^{2} u_{x} dx \quad \frac{1}{24} \quad u_{\frac{1}{2}} \quad 23u_{\frac{1}{2}} \quad 23u_{\frac{3}{2}} \quad u_{\frac{5}{2}} \qquad 4$$

- (b) Derive Simpson's three-eighth rule of numerical integration without deriving general quadrature formula.7
- **6.** (a) Differentiate among forward, backward and divided difference interpolations. 4
 - (b) Derive Gregory-Newton forward interpolation formula. Hence, deduce Gregory-Newton advancing formula.
 7

UNIT—IV

7. (a) State the axiomatic definition of probability. 2

22D/116 (Turn Over)

(4)

	(b)	If A and B are two events, then prove that						
		$\begin{array}{cccc} P(A & B) & P(A) & P(B/A), & P(A) & 0 \\ P(B) & P(A/B), & P(B) & 0 \end{array}$						
	where notations are as usual.							
	(c)	Define conditional probability.						
8.	(a) If A, B and C are mutually independent events, then show that A B and C are also independent.							
	(b)	b) A problem in statistics is given to three students <i>A</i> , <i>B</i> and <i>C</i> whose probabilities of solving the problem are $\frac{1}{2}$, $\frac{3}{4}$ and $\frac{1}{4}$ respectively. What is the probability that the problem will be solved if all of them try independently?						
	(c)	From a city population, the probability of selecting (<i>i</i>) a male or a smoker is $\frac{7}{10}$, (<i>ii</i>) a male smoker is $\frac{2}{5}$ and (<i>iii</i>) a male, if a smoker is already selected is $\frac{2}{3}$. Obtain the probability of selecting (<i>a</i>) a non-smoker, (<i>b</i>) a male and (<i>c</i>) a smoker, if a male is first selected.	4					
Unit—V								
9.	(a)	Differentiate between discrete and continuous random variables.	3					
22D /116 (Continued)								

ł

(b) If joint distribution of X and Y is defined as

$$f(x, y) \quad 4xy \ e^{-(x^2 - y^2)}; \ x \quad 0, y \quad 0$$

test whether *X* and *Y* are independent.

For the above joint distribution, obtain the conditional density of X for given Y y.

5

3

7

- *(c)* Discuss the properties of mathematical expectation.
- **10.** (a) Let X_1, X_2, \dots, X_n be n random variables, then prove that

$$V \stackrel{n}{\underset{i \ 1}{a_i x_i}} \stackrel{n}{\underset{i \ 1}{a_i^2 V(x_i)}} 2 \stackrel{n}{\underset{i \ 1 \ j \ 1}{a_i a_j Cov(x_i, x_j)}}$$

(b) If two dice are thrown simultaneously, obtain the expected values of the sum of numbers of points on them.

 $\star\star\star$