2022

(February)

STATISTICS

(Elective/Honours)
(Descriptive Statistics, Numerical Analysis and Probability)
[STEH-1 (TH)]
Marks : 56
Time : 3 hours
The figures in the margin indicate full marks for the questions

Answer five questions, selecting one from each Unit
Unit-I

1 (a) A person covers from place A to place B by cycling at a speed of 12 km per hour and returning back from place B to place A at a speed of 16 km per hour. Obtain the average speed of that person in the whole journey.
(b) Let $X_{1 i}$ is one series with size n_{1} and geometric mean G_{1} and $X_{2 j}$ is another series with size n_{2} and geometric mean G_{2}. Obtain the geometric mean of combined series.
(c) Obtain simple and weighted arithmetic mean of the first n natural numbers, the weights being the corresponding numbers.
2. (a) Differentiate between primary and secondary data. $21 / 2$
(b) Write short notes on the following: $41 / 2$
(i) Frequency distribution
(ii) Frequency curve
(c) Compare mean, median and mode as measures of location of a distribution.
UNIT-II
3. (a) What is regression? What do you mean by 'lines of regression'?
(b) Write the regression equations of Y on X and X on Y. Also write the properties of regression coefficient.
(c) Write a note on intra-class correlation coefficient.

\square都
4. (a) Derive coefficient of partial correlation. $71 / 2$
(b) Explain the properties of multiple correlation coefficient.

2
(c) Obtain multiple correlation in terms of total and partial correlations.
UniT—III
5. (a) If third-order differences are constant, prove that

$$
\int_{0}^{2} u_{x} d x=\frac{1}{24}\left(u_{-\frac{1}{2}}+23 u_{\frac{1}{2}}+23 u_{\frac{3}{2}}+u_{\frac{5}{2}}\right)
$$

(b) Derive Simpson's three-eighth rule of numerical integration without deriving general quadrature formula.
6. (a) Differentiate among forward, backward and divided difference interpolations.
(b) Derive Gregory-Newton forward interpolation formula. Hence, deduce Gregory-Newton advancing formula.
UniT—IV
7. (a) State the axiomatic definition of probability.

2
(b) If A and B are two events, then prove that

$$
\begin{aligned}
P(A \cap B) & =P(A) \cdot P(B / A), \quad P(A)>0 \\
& =P(B) \cdot P(A / B), \quad P(B)>0
\end{aligned}
$$

where notations are as usual.
(c) Define conditional probability.
8. (a) If A, B and C are mutually independent events, then show that $A \cup B$ and C are also independent.
(b) A problem in statistics is given to three students A, B and C whose probabilities of solving the problem are $\frac{1}{2}, \frac{3}{4}$ and $\frac{1}{4}$ respectively. What is the probability that the problem will be solved if all of them try independently?
(c) From a city population, the probability of selecting (i) a male or a smoker is $\frac{7}{10}$, (ii) a male smoker is $\frac{2}{5}$ and (iii) a male, if a smoker is already selected is $\frac{2}{3}$. Obtain the probability of selecting (a) a non-smoker, (b) a male and (c) a smoker, if a male is first selected.
UniT-V
9. (a) Differentiate between discrete and continuous random variables.

(5)

(b) If joint distribution of X and Y is defined as

$$
f(x, y)=4 x y e^{-\left(x^{2}+y^{2}\right)} ; x \geq 0, y \geq 0
$$

test whether X and Y are independent.
For the above joint distribution, obtain the conditional density of X for given $Y=y$.
(c) Discuss the properties of mathematical expectation.
10. (a) Let $X_{1}, X_{2}, \cdots, X_{n}$ be n random variables, then prove that
$V\left(\sum_{i=1}^{n} a_{i} x_{i}\right)=\sum_{i=1}^{n} a_{i}^{2} V\left(x_{i}\right)+2 \sum_{i=1}^{n} \sum_{j=1}^{n} a_{i} a_{j} \operatorname{Cov}\left(x_{i}, x_{j}\right)$
(b) If two dice are thrown simultaneously, obtain the expected values of the sum of numbers of points on them.

