2022

(February)

STATISTICS

(Elective/Honours)
(Descriptive Statistics, Numerical Analysis, Probability)
[STEH-1 (TH)]
Marks : 56
Time : 3 hours
The figures in the margin indicate full marks for the questions

Answer five questions, selecting one from each Unit
Unit-I

1. (a) State various methods of collecting primary data and comment on their relative merits.
(b) Show that mean deviation is the least when calculated about median.
2. (a) What do you mean by the term 'central tendency'? Compare the merits and demerits of arithmetic mean, the median and the mode. $2+4=6$
(b) Define moments. Establish the relationship between the moments about mean in terms of moments about any arbitrary point.
UniT-II
3. (a) Explain the concepts of correlation (r). Can it be used to measure any relationship between two variables? Show that $|r| \leq 1 . \quad 2+1+3=6$
(b) Explain the method of least squares as applied to regression analysis.
4. (a) Explain multiple and partial correlation coefficients with examples.
(b) Why are there in general two lines of regression?
(c) Write a note on intra-class correlation. 5
UnIT-III
5. (a) Define the terms 'argument' and 'entry' involved in a difference table.
(b) Explain the difference between

$$
\left(\frac{\Delta^{2}}{E}\right) U_{x} \text { and } \frac{\Delta^{2} U_{x}}{E U_{x}}
$$

and find the values of these functions when $U_{x}=x^{2}$.
$2+2+2=6$
(c) Show that

$$
\Delta \log f(x)=\log \left[1+\frac{\Delta f(x)}{f(x)}\right]
$$

6. (a) Define divided differences and show that the r th order divided difference is a symmetric function of argument. $1+5=6$
(b) State and prove Simpson's three-eighth rule for approximate integration.
UniT—IV
7. (a) State and prove multiplicative law of probability.
(b) If $P(\bar{A})=\alpha$ and $P(\bar{B})=\beta$, then prove that $P(A \cap B) \geq 1-\alpha-\beta$.
(c) Show that for any two arbitrary events A and B

$$
P(A \cap B) \leq P(A) \leq P(A \cup B) \leq P(A)+P(B)
$$4

8. (a) State and prove Bayes' theorem of probability.
(b) Let A and B be two events such that $P(A)=\frac{3}{4}$ and $P(B)=\frac{5}{8}$. Show that

$$
\frac{3}{8} \leq P(A \cap B) \leq \frac{5}{8}
$$

(c) Two urns, similar in appearance, certain following numbers of white and black balls are as follows :
Urn I : 6 white and 4 black balls
Urn II : 5 white and 5 black balls
One urn is selected at random and a ball is drawn from it. It happens to be white. What is the probability that it has come from the urn I ?
Unit—V
9. (a) Define probability distribution function.
(b) Let X be a continuous random variable with p.d.f.

$$
f(x)=\left\{\begin{array}{lll}
a x & , & 0 \leq x \leq 1 \\
a & , & 1 \leq x \leq 2 \\
-a x+3 a, & 2 \leq x \leq 3 \\
0 & , & \text { otherwise }
\end{array}\right.
$$

Determine the constant a and compute $P(X \leq 2 \cdot 5)$.

(5)

(c) Define moment-generating function (m.g.f.) and cumulant-generating function of a random variable. Also, find the m.g.f. of the random variable whose moments are

$$
\mu_{r}^{\prime}=(r+1)!2^{r} \quad 2+3=5
$$

10. (a) If X is a discrete random variable, then prove that

$$
E(X)=\sum_{r=1}^{\infty} P(x \geq r)
$$

(b) Two random variables X and Y have the following joint probability function :

$$
f(x, y)= \begin{cases}2-x-y ; & 0 \leq x \leq 1,0 \leq y \leq 1 \\ 0 ; & \text { otherwise }\end{cases}
$$

Find the following : $\quad 2+2+2+2=8$
(i) Marginal probability density functions of X and Y
(ii) Conditional density functions
(iii) $\operatorname{Var}(X)$ and $\operatorname{Var}(Y)$
(iv) Covariance between X and Y

