3/H-64 (iii) (Syllabus-2015)

(2)

2022

(February)

BIO-CHEMISTRY

(Honours)

(Proteins and Enzymes)

(BCHEM-301)

Marks : 56

Time: 3 hours

The figures in the margin indicate full marks for the questions

Answer any four questions

(a) Describe the criterie for determining the

Ι.	(α)	Describe the criteria for determining the					
		homogeneity of a protein.					
	(b)	Describe the underlying principle of					
		Edman degradation method in protein					
		sequencing.	7				

- **2.** (a) What are enzymes? How does an enzyme affect the activation energy of a reaction? 3+4=7
 - (b) Discuss the general principle used in the classification of enzymes. 4
 - (c) What are active sites?

, ,	enzyme	activi	ty.				
(b)	What	are c	oenzyn	nes?	Dis	cuss	the
	structu	re an	d fun	ction	$\circ f$	pyrid	oxa1

phosphate.

3. (a) Describe the factors that affect rate of

4. (a) Describe the mechanism of action of lysozyme.

(b) What is the catalytic triad of chymotrypsin? 4

5. (a) Derive Michaelis-Menten equation under steady-state assumption.

(b) Why do allosteric enzymes exhibit sigmoidal kinetics?

6. (a) What do you understand by the feedback regulation mechanism?

(b) Given the following values of $k_{\rm m}$, $k_{\rm cat}$ and $k_{\rm cat}$ / $k_{\rm m}$, determine the types of inhibition for each of the following enzyme inhibitors. Explain how you would evaluate the type of inhibition for the given inhibitors:

Enzyme	$k_{\rm m}$ (mM)	$k_{\rm cat}(s^{-1})$	$k_{\rm cat} / k_{\rm m} ({ m M}^{-1} { m s}^{-1})$
No inhibitor	2.5	39	1·56×10 ⁴
Inhibitor 1	1.02	15.6	1·56×10 ⁴
Inhibitor 2	10	39	3·90×10 ³
Inhibitor 3	2.5	15.6	6·24×10 ³

22D**/40** (Turn Over)

22D**/40**

(Continued)

7

9

5

4

(3)

- **7.** Describe any *two* of the following: $7 \times 2 = 14$
 - (a) Allosteric regulation
 - (b) Protein turnover
 - (c) Dialysis
 - (d) Zymogenicity

* * *