2022

(February)

CHEMISTRY

(Elective/Honours)
(General Chemistry-III)
[Chem-EH-301]
Marks : 56
Time : 3 hours
The figures in the margin indicate full marks for the questions

SECTION-I

(Inorganic)

(Marks : 18)

1. (a) Arrange the alkali metal ions in increasing order of their conductivities in aqueous solution and give an appropriate reason for the arrangement made.
(b) Explain the following observations :

$$
11 / 2 \times 2=3
$$

(i) Electron enthalpy of F is less than that of Cl .
(ii) SO_{2} acts as both an oxidizing and reducing agent.

OR

2. (a) Beryllium, the first member of group-2 differs widely from the rest of the elements of the group. Explain the above fact on the basis of-
(i) the tendency of the metals to form covalent compounds;
(ii) the reactivity of metal with water.

$$
11 / 2+11 / 2=3
$$

(b) Give one method of preparation and use of the following : $\quad 1 \frac{1}{2}+1^{11 / 2}=$
(i) Sodium thiosulphate
(ii) Boric acid
3. (a) Explain the following, giving reasons for your answer : $1 \frac{112}{2}+1 \frac{1}{2}=3$
(i) Transition metals have high tendency to form complexes.
(ii) The second and third rows of transition elements resemble each other more closely than they resemble the first row elements.
(b) Write one method of preparation of uranium hexafluoride and its reaction with water. Write one use of the compound. $1+1+1=3$

OR

4. (a) Explain the following: $1 \frac{1}{2}+1 \frac{1}{2}=3$
(i) Why do all lanthanide elements show a common oxidation of +3 ?
(ii) The post lanthanide transition metals have unusually high densities.
(b) What is actinide contraction? What are its consequences?

1
(c) Write down one method of preparation of potassium dichromate and one use of it in organic synthesis. $1+1=2$
5. (a) Define effective atomic number (EAN) and calculate the EAN of Co in $\mathrm{Co}_{2}(\mathrm{CO})_{8}$.

2
(b) Give the IUPAC nomenclature of the following : $1+1=2$
(i) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}(\mathrm{ONO})\right] \mathrm{Cl}_{2}$
(ii) $\mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{5}(\mathrm{NO})\right]$
(c) Draw the optical isomers of cis-[Co(en) $\left.\mathrm{Cl}_{2}\right]^{+}$.

$$
\begin{equation*}
\left(\mathrm{en}=\mathrm{H}_{2} \mathrm{~N}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{NH}_{2}\right) \tag{2}
\end{equation*}
$$

OR

6. (a) Give examples of one paramagnetic and one diamagnetic complex of Co^{3+} and calculate their spin-only magnetic moments (μ_{s}).
(b) Explain the following with suitable examples :
$1+1=2$
(i) Ionization isomerism
(ii) Hydrate isomerism
(c) On the basis of VBT, explain the bonding in $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$.

SECTION-II

(Organic)

(Marks : 19)

7. (a) Give proper justification to explain why $\mathrm{CF}_{3} \mathrm{COOH}$ is a stronger acid than $\mathrm{CCl}_{3} \mathrm{COOH}$.
(b) Complete the following reactions : $1 \times 3=3$

(ii)

(iii) $\mathrm{CH}_{3}-\stackrel{\mathrm{O}}{\mathrm{C}}-\mathrm{O}-\stackrel{\mathrm{O}}{\mathrm{C}}-\mathrm{CH}_{3} \xrightarrow{\mathrm{H}_{2} \mathrm{O} / \mathrm{H}^{\oplus}}$?
(c) Explain the term 'active methylene compounds' with a suitable example. 1½
(d) How can you convert ethyl acetoacetate to butanoic acid?
(e) Identify A, B and C in the following sequence of conversions :

OR

8. (a) With a suitable example, illustrate Hell-Volhard-Zelinsky (HVZ) reaction. Why does benzoic acid not undergo HVZ reaction? $11 / 2+1 / 2=2$
(b) Complete the following reactions :
$(1 / 2+1 / 2)+1+1=3$
(i) $\mathrm{CO}_{2}+\mathrm{CH}_{3}-\mathrm{MgBr} \xrightarrow[\text { ether }]{\text { Dry }}[A] \xrightarrow{\mathrm{H}_{2} \mathrm{O} / \mathrm{H}^{\oplus}}[B]$
(ii)

(iii)

(c) How can you convert diethylmalonate to succinic acid?
(d) Show how the phenomenon of 'tautomerism' stabilizes an active methylene compound.
(e) Why should the ester formed be removed from the reaction vessel periodically in the reaction between carboxylic acid and alcohols?
. (a) Give a method to distinguish between primary, secondary and tertiary alcohols.
(b) Giving proper equation, show what happens when nitrobenzene is reduced with stannous chloride in alkaline medium.
(c) Arrange the following compounds in order of increasing acid strength with proper justification :
(d) What happens when a primary aliphatic amine is treated with nitrous acid? Give correct equation.
(e) Complete the following reactions: $1 \times 2=2$
(i) $\longrightarrow-\mathrm{N}_{2}^{+} \mathrm{Cl}^{-}+\mathrm{KI}(\mathrm{aq}) \longrightarrow$?
(ii)

OR
10. (a) Write the mechanism for the formation of benzene diazonium chloride from aniline.

2
(b) Complete the following reactions : $1 \times 3=3$

(ii)

(iii) $\mathrm{C}_{2} \mathrm{H}_{5}-\mathrm{NH}_{2}+\mathrm{CS}_{2} \longrightarrow$?
(c) Write the mechanism of carbylamine reaction.
(d) Give the correct equation to show what happens when acetic acid reacts with diazomethane.
(e) Why are aromatic diazonium chlorides more stable than aliphatic diazonium chlorides?
(c) State and explain the Le Chatelier's principle and explain the effect of temperature on the following reaction :

$$
11 / 2+11 / 2=3
$$

$$
\begin{array}{r}
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g}) \\
\Delta H=-92 \cdot 38 \mathrm{~kJ}
\end{array}
$$

(d) The value of K_{p} for the water gas reaction

$$
\mathrm{CO}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CO}_{2}+\mathrm{H}_{2}
$$

is 1.06×10^{5} at $25^{\circ} \mathrm{C}$. Calculate the standard state free energy change $\left(\Delta G^{\circ}\right)$ of the reaction at $25^{\circ} \mathrm{C}$ ($R=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$).
13. (a) Derive an expression for the rate constant of a first-order reaction of the type $A \rightarrow$ products.
(b) Discuss the effect of catalyst on the rate of a reaction.
(c) State Henry's law. What are the limitations of Henry's law? $\quad 11 / 2+1=2^{1 / 2}$
(d) 50% of a first-order reaction is completed in 23 minutes. Calculate the time required to complete 90% of the reaction.

