3/EH-29 (iii) (Syllabus-2015)

2022

(February)

MATHEMATICS

(Elective / Honours)

(Algebra-II and Calculus-II)

> (GHS-31)

Marks : 75
Time : 3 hours
The figures in the margin indicate full marks for the questions

Answer five questions, taking one from each Unit
Unit-I

1. (a) Show that the set of all positive rational numbers forms an Abelian group under the composition defined by

$$
a * b=\frac{a b}{2}
$$

(b) Show that the intersection of two subgroups of a group G is also a subgroup.
(c) If a and b are any two elements of a group G and H is any subgroup of G, then prove that

$$
\begin{aligned}
& \qquad H a=H b \Rightarrow a b^{-1} \in H \\
& \text { where } H a=\text { right coset of } H \text { in } G \\
& \text { generated by } a \text {. }
\end{aligned}
$$

2. (a) Let G be a group and a, b are elements of G. Prove that the equations $a x=b$ and $y a=b$, have unique solutions in G.
(b) Show that an infinite cyclic group has exactly two generators.
(c) Let G be a group and H a subgroup of G. Prove that G is the union of all left cosets of H in G and any two distinct left cosets of H in G are disjoint.
Unit—II
3. (a) If a polynomial $f(x)$ is divided by $x-\alpha$, then show that the remainder is $f(\alpha)$.
(b) Find the value of k such that the polynomial $4 x^{3}-3 x^{2}+2 x+k$ is divisible by $(x+2)$.
(c) Solve the equation

$$
x^{4}-x^{3}+3 x^{2}+31 x+26=0
$$

if one root is $2+3 i$.
(d) Prove that the equation

$$
x^{4}+15 x^{2}+7 x-11=0
$$

has two real roots, one positive and the other negative and two other complex roots.
4. (a) If α, β, γ be the roots of the equation

$$
x^{3}+2 x^{2}+3 x+1=0
$$

find the equation whose roots are

$$
\alpha(\beta+\gamma), \beta(\gamma+\alpha), \gamma(\alpha+\beta)
$$

(b) Solve the equation $x^{3}-12 x-65=0$ by Cardan's method.
(c) If $2 \cos \theta=a+\frac{1}{a}$, prove that

$$
2 \cos n \theta=a^{n}+\frac{1}{a^{n}}
$$

Unit-III
5. (a) Prove that a convergent sequence is always bounded. Is the converse true? Justify your answer with example. 4+1=5
(b) Apply Cauchy's general principle of convergence to show that the sequence $\left\{u_{n}\right\}$ is convergent, if

$$
u_{n}=1-\frac{1}{2}+\frac{1}{3}-\cdots+(-1)^{n-1} \frac{1}{n}
$$

(c) If

$$
u_{n}=\frac{2 \cdot 5.8 \ldots(3 n-1)}{3.7 .11 \ldots(4 n-1)}
$$

prove that $\left\{u_{n}\right\}$ is monotonic decreasing and its limit is zero.
6. (a) Test the convergence of any two of the following series :
(i) $\sum_{n=1}^{\infty} u_{n}$, where $u_{n}=\frac{1}{\sqrt{n(n+1)}}$
(ii) $\frac{x}{1}+\frac{x^{2}}{2}+\frac{x^{3}}{3}+\frac{x^{4}}{4}+\ldots$
(iii) $\frac{1}{1.2 .3}+\frac{3}{2 \cdot 3.4}+\ldots+\frac{2 n-1}{n(n+1)(n+2)}+\ldots$
(b) Give an example of-
(i) an absolutely convergent series;
(ii) a conditionally convergent series with proper justification. $\quad 2+2=4$
(c) Show that an absolutely convergent series is convergent. Determine the radius of convergence of the power series $1+2 x+3 x^{2}+4 x^{3}+\ldots \quad 3+2=5$
Unit-IV
7. (a) State and prove Lagrange's mean value theorem of differential calculus. $2+4=6$
(b) Find the asymptotes of the curve

$$
\begin{equation*}
\left(x^{2}-y^{2}\right)(x+2 y)+5\left(x^{2}+y^{2}\right)+x+y=0 \tag{4}
\end{equation*}
$$

(c) Find the radius of curvature of the curve $y=4 \sin x-\sin 2 x$ at the point where $x=\frac{\pi}{2}$.
8. (a) Find the local maximum and local minimum values of the function

$$
\begin{equation*}
f(x)=\sin x+\frac{1}{2} \cos 2 x, \quad 0 \leq x \leq \frac{\pi}{2} \tag{5}
\end{equation*}
$$

(b) If $z=\log \left(\frac{x^{4}+y^{4}}{x+y}\right)$, then prove that

$$
x \frac{\partial z}{\partial x}+y \frac{\partial z}{\partial y}=3
$$

(c) Let f be a function of two variables defined as follows :

$$
f(x, y)=\left\{\begin{array}{ccc}
\frac{\left(x^{3}+y^{3}\right)}{x y(x-y)} & \text { when } & x \neq y \\
0 & \text { when } & x=y
\end{array}\right.
$$

Show that f is discontinuous at the origin.

UniT-V

9. (a) Expand $\sin x$ in a finite series in powers of x, with remainder in Lagrange's form.
(b) Find the area included between the curve $y^{2}=9 x$ and straight line $y=x$.
(c) Show that the length of the curve $y=\log \sec x$ between the points where $x=0$ and $x=\frac{1}{3} \pi$ is $\log (2+\sqrt{3})$.

(7)

10. (a) Find the volume of the paraboloid generated by the revolution about the x-axis of the parabola $y^{2}=4 a x$ from $x=0$ to $x=h$.
(b) Change the order of integration of

$$
I=\int_{0}^{a} \int_{\frac{x}{a}}^{\sqrt{\left(\frac{x}{a}\right)}}\left(x^{2}+y^{2}\right) d x d y
$$

(c) Find the length of the arc of the parabola $x^{2}=4 y$ from the vertex to the point $x=2$.

