3/EH-29 (iii) (Syllabus-2015)

2022

(February)

MATHEMATICS

(Elective / Honours)

(Algebra-II and Calculus-II)

(GHS-31)

Marks : 75

Time : 3 hours

The figures in the margin indicate full marks for the questions

Answer five questions, taking one from each Unit

Unit—I

1. (a) Show that the set of all positive rational numbers forms an Abelian group under the composition defined by

$$a * b = \frac{ab}{2}$$

(b) Show that the intersection of two subgroups of a group G is also a subgroup.

22D/167

(Turn Over)

5

(2)

(c) If a and b are any two elements of a group G and H is any subgroup of G, then prove that

 $Ha = Hb \Rightarrow ab^{-1} \in H$

where Ha = right coset of H in G generated by a.

- 2. (a) Let G be a group and a, b are elements of G. Prove that the equations ax = b and ya = b, have unique solutions in G.
 - (b) Show that an infinite cyclic group has exactly two generators.5
 - (c) Let G be a group and H a subgroup of G.Prove that G is the union of all left cosets of H in G and any two distinct left cosets of H in G are disjoint.

Unit—II

- **3.** (a) If a polynomial f(x) is divided by $x \alpha$, then show that the remainder is $f(\alpha)$. 3
 - (b) Find the value of k such that the polynomial $4x^3 3x^2 + 2x + k$ is divisible by (x+2).

22D/167

(Continued)

5

6

(c) Solve the equation

$$x^4 - x^3 + 3x^2 + 31x + 26 = 0$$

if one root is $2 + 3i$. 5

(d) Prove that the equation

$$x^4 + 15x^2 + 7x - 11 = 0$$

has two real roots, one positive and the other negative and two other complex roots.

4. (a) If α , β , γ be the roots of the equation

$$x^3 + 2x^2 + 3x + 1 = 0$$

find the equation whose roots are

$$\alpha (\beta + \gamma), \beta (\gamma + \alpha), \gamma (\alpha + \beta)$$
 5

(b) Solve the equation $x^3 - 12x - 65 = 0$ by Cardan's method.

(c) If
$$2\cos\theta = a + \frac{1}{a}$$
, prove that
 $2\cos n\theta = a^n + \frac{1}{a^n}$

22D/167

(Turn Over)

5

5

5

Unit—III

- 5. (a) Prove that a convergent sequence is always bounded. Is the converse true? Justify your answer with example. 4+1=5
 - (b) Apply Cauchy's general principle of convergence to show that the sequence $\{u_n\}$ is convergent, if

$$u_n = 1 - \frac{1}{2} + \frac{1}{3} - \dots + (-1)^{n-1} \frac{1}{n}$$
 5

$$u_n = \frac{2.5.8...(3n-1)}{3.7.11...(4n-1)}$$

prove that $\{u_n\}$ is monotonic decreasing and its limit is zero.

6. (a) Test the convergence of any *two* of the following series : 3×2=6

(i)
$$\sum_{n=1}^{\infty} u_n$$
, where $u_n = \frac{1}{\sqrt{n(n+1)}}$
(ii) $\frac{x}{1} + \frac{x^2}{2} + \frac{x^3}{3} + \frac{x^4}{4} + \dots$
(iii) $\frac{1}{1.2.3} + \frac{3}{2.3.4} + \dots + \frac{2n-1}{n(n+1)(n+2)} + \dots$

22D/167

(Continued)

5

- (b) Give an example of—
 - (i) an absolutely convergent series;
 - *(ii)* a conditionally convergent series with proper justification. 2+2=4
- (c) Show that an absolutely convergent series is convergent. Determine the radius of convergence of the power series $1+2x+3x^2+4x^3+...$ 3+2=5

UNIT—IV

- **7.** (*a*) State and prove Lagrange's mean value theorem of differential calculus. 2+4=6
 - (b) Find the asymptotes of the curve

$$(x2 - y2)(x + 2y) + 5(x2 + y2) + x + y = 0$$
 4

- (c) Find the radius of curvature of the curve $y = 4\sin x \sin 2x$ at the point where $x = \frac{\pi}{2}$.
- **8.** (a) Find the local maximum and local minimum values of the function

$$f(x) = \sin x + \frac{1}{2}\cos 2x, \quad 0 \le x \le \frac{\pi}{2}$$
 5

(6)

(b) If
$$z = \log\left(\frac{x^4 + y^4}{x + y}\right)$$
, then prove that
$$x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y} = 3$$

(c) Let f be a function of two variables defined as follows :

$$f(x, y) = \begin{cases} \frac{(x^3 + y^3)}{xy(x - y)} & \text{when } x \neq y \\ 0 & \text{when } x = y \end{cases}$$

Show that f is discontinuous at the origin.

Unit—V

- 9. (a) Expand sin x in a finite series in powers of x, with remainder in Lagrange's form.
 - (b) Find the area included between the curve $y^2 = 9x$ and straight line y = x. 5
 - (c) Show that the length of the curve $y = \log \sec x$ between the points where x = 0 and $x = \frac{1}{3}\pi$ is $\log (2 + \sqrt{3})$.

22D/167

(Turn Over)

5

22D/167

(

(Continued)

5

5

(7)

- **10.** (a) Find the volume of the paraboloid generated by the revolution about the *x*-axis of the parabola $y^2 = 4ax$ from x = 0 to x = h.
 - (b) Change the order of integration of

$$I = \int_0^a \int_{\frac{x}{a}}^{\sqrt{\frac{x}{a}}} (x^2 + y^2) dx dy$$

5

5

5

(c) Find the length of the arc of the parabola $x^2 = 4y$ from the vertex to the point x = 2.
