5/H-23 (v) (a) (Syllabus-2019)

(2)

2022

(February)

CHEMISTRY

(Honours)

[Chem-H-501]

(Part—A: Inorganic Chemistry—I)

Marks : 38

Time: 2 hours

The figures in the margin indicate full marks for the questions

- **1.** (a) Write all the symmetry operations of the following: $1\frac{1}{2} \times 2=3$
 - (i) Octahedral point group molecules (O_h)
 - (ii) Tetrahedral point group molecules (T_d)
 - (b) Taking a suitable example, explain inversion centre of a molecule. 1½

(c)	Assign	molecular	point	group	to	the
	following molecules:					$1 \times 2 = 2$

- (i) XeOF₄
- (ii) B_2H_6
- (d) How many symmetry element does a molecule with C_1 point group have?

OR

- **2.** (a) Draw the flowchart diagram for determining the point group of the molecules.
 - (b) Define the following: $1 \times 3 = 3$
 - (i) Symmetry plane
 - (ii) Improper rotation
 - (iii) Molecular point group
 - (c) Comment on the point group of linear molecules.
 - (d) Write down all the symmetry operations of S_5 .
- 3. (a) What are EDTA titrations? What type of indicators are used in EDTA titrations? Explain clearly the working of these indicators.

 1+1+2=4

22D**/220** (Turn Over)

22D**/220**

(Continued)

2

1

(b) The amount of oxalic acid present in a given solution was determined by two methods, one is standard method and the other is new method, when the following results were obtained:

Sample No.	Amount of oxalic acid (g/L) obtained		
ватріе по.	Standard method	New method	
1	8.65	9.35	
2	11.70	11.06	
3	7.38	8.90	
4	13.95	11.25	
5	10.20	16.42	
6	9.21	11.72	

Show that there is no significant difference between the two methods.

2

- (c) Draw the structures and mention one application each of the following compounds as precipitants: 1+1=2
 - (i) α-nitroso-β-napthol
 - (ii) Cupron

OR

- **4.** (a) Explain how chloride is estimated using adsorption indicator. 1½
 - (b) Using a suitable example, explain masking and de-masking agents in EDTA titrations. 1½

(c) Differentiate between post-precipitation and co-precipitation.

- (d) How many significant figures are present in 0.2341 and 2.300? Write a brief note on personal errors. $\frac{1}{2}+\frac{1}{2}+1=2$
- (e) Mention the advantage of organic precipitants to inorganic reagents. Which reagent is used to precipitate nickel? Draw the precipitated complex.

 $1+\frac{1}{2}+\frac{1}{2}=2$

1

- **5.** (a) Write short notes on the following: $1 \times 2 = 2$
 - (i) Alpha decay
 - (ii) Electron capture
 - (b) Differentiate between secular equilibrium and transient equilibrium. 1
 - (c) Calculate the energy released in the following nuclear reaction involving the decay of U^{238} by ${}_{2}\alpha^{4}$ particle emission:

$$_{92}U^{238} \rightarrow _{90}Th^{234} + _{2}\alpha^{4} + Q$$

The mass values are—

$$U^{238} = 238 \cdot 1249$$
 a.m.u.

$$Th^{234} = 234.1165 \text{ a.m.u.}$$

$$_{2}\alpha^{4} = 4.0039$$
 a.m.u.

2

6.

7.

22D**/220**

electrons.

3

2

2

3

3

substance

2+1/2=21/2

(Continued)

repelled by a magnet?

22D**/220**

(d) (e)	Mention three applications of radio- isotopes as tracers. Write a note on the electrolytic separation of isotopes.	11/2		State and explain Jahn-Teller effect. Discuss the spectral consequences of Jahn-Teller effect for octahedral complexes.	
	OR			OR	
(a)	Discuss the principle of a thermal reactor.	1½	8. (a)	Which of the following complex ions of Co^{2+} has the weakest crystal field splitting (Δ_o) ?	
(b)	Define <i>Q</i> -value and mention its significance.	1½		$[\text{CoCl}_6]^{4-}$, $[\text{Co(CN)}_6]^{4-}$, $[\text{Co(NH}_3)_6]^{2+}$ and $[\text{Co(en)}_3]^{2+}$	
(c)	Explain with a labelled diagram the working of a GM counter in the detection of radioactivity.	2½	(b)	Explain high-spin and low-spin states of coordination compounds with the help of crystal field theory.	
(d)	Why does a radioactive element emit gamma radiation? Comment on the penetrating and ionizing power of alpha particles, beta particles, gamma rays and neutrons. 1/2+2=	=2½	(c)	Calculate the number of unpaired electrons in octahedral complexes for d^3 - and d^5 -systems when $\Delta_o > P$ and $\Delta_o < P$.	
(a)	Explain on the basis of crystal field theory, $[Ni(CN)_4]^{2-}$ is diamagnetic whereas $[NiCl_4]^{2-}$ is paramagnetic.	2	9. (a)	Discuss the variation of magnetic susceptibilities of ferromagnetic and antiferromagnetic compounds as a function of temperature.	
(b)	Draw the energy level splitting diagram of d^8 square planar geometry and show occupancy of the d -orbitals by		(b)	What is meant by the statement that "diamagnetism is an induced effect"?	

2

(Turn Over)

(7)

(c) Describe the Gouy method of measurement of magnetic susceptibility of a substance. $2\frac{1}{2}$

OR

10. (a) What are antiferromagnetism and Neel temperature? Comment on the magnetism of the following compounds: $1+1+1\frac{1}{2}=3\frac{1}{2}$

 $K_4[Fe(CN)_6], [Co(NH_3)_6]Cl_6, K_3[MnF_6]$

- (b) Write down the Curie-Weiss law. Write down the equation for calculation of spin magnetic moment. $1+\frac{1}{2}=1\frac{1}{2}$
- (c) What is the cause of magnetism in atoms? What is a Bohr magneton? What kind of magnetism will be exhibited by [Ni(CO)₄]? 1+1+1=3

 $\star\star\star$