2022

(February)

CHEMISTRY

(Honours)

(Part-A : Physical)

[Chem-H-503]
Marks : 37
Time : 2 hours
The figures in the margin indicate full marks for the questions

1. (a) Using Maxwell's distribution law of molecular velocities, show that the root-mean-square velocity of a molecule is $\sqrt{\frac{3 R T}{M}}$, the terms having their usual meanings.
(b) What is most probable velocity? Calculate the most probable velocity of CO_{2} molecule at $27^{\circ} \mathrm{C}$.
[Given, $R=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$] $\quad 1+2=3$
(c) Explain the term 'collision frequency'. 2
2. (a) Define the following elements of symmetry : $1 \times 3=3$
(i) Plane of symmetry
(ii) Axis of symmetry
(iii) Centre of symmetry
(b) Calculate the number of atoms contained within (i) a primitive cubic unit cell, (ii) a body-centred cubic unit cell and (iii) a face-centred cubic unit cell.

$$
1+1+1=3
$$

OR

6. (a) Describe the powder method for the determination of the crystal structure of sodium chloride.
(b) Calculate the angle at which first-order reflection will occur in an X-ray spectrometer when X-rays of wavelength $1.50 \AA$ are diffracted by the atoms of a crystal. Given that the interplanar distance is $4.04 \AA$.
7. (a) Discuss the collision theory of reaction rates. Mention one of its limitations.
(b) Write notes on the following : $1 \frac{1}{2}+1 \frac{1}{2}=3$
(i) Homogeneous catalysis
(ii) Opposing or reversible reactions

OR
8. (a) Write a note on parallel reactions and obtain the rate expression for such reactions.
(b) Explain transition state theory of reaction rates with relevant expressions.
9. (a) Write down the expression for the rotational energy of a diatomic molecule taking it as rigid rotor. Draw the rotational energy-level diagram for such molecule.
$2+2=4$
(b) The fundamental vibrational frequency of HCl is $2890 \mathrm{~cm}^{-1}$. Calculate the force constant of this molecule.

OR

10. (a) State Beer-Lambert law. Give its mathematical expression and hence define molar extinction coefficient.
$1+2+1=4$
(b) Explain the following : $2+2=4$
(i) Born-Oppenheimer approximation
(ii) Isotope effect in vibrational spectrum
