2022

(February)

MATHEMATICS

(Honours)

(Differential Equations)

[GHS-53]

- Marks : 30
- Time : 2 hours

The figures in the margin indicate full marks for the questions

Answer **two** questions, choosing **one** from each Unit

Unit—I

- **1.** (a) Solve: $x^{2} \frac{d^{2}y}{dx^{2}} (x^{2} - 2x)\frac{dy}{dx} (x - 2)y - x^{3} e^{x}$
 - *(b)* Solve the following exact differential equation :

$$\sin x \ \frac{d^2 y}{dx^2} \ \cos x \ \frac{d y}{dx} \ 2y \ \sin x \ 0$$

(c) Solve the following equation : 4

$$\frac{dx}{y z} \frac{dy}{z x} \frac{dz}{x y}$$

22D/234

(Turn Over)

6

5

(2)

2. (a) Find f(y), if $f(y) dx zx dy xy \log y dz 0$ is integrable. 5 (b) Solve : 5 $(2x^2 2xy 2xz^2 1)dx dy 2z dz 0$ (c) Solve : 5 $\frac{dx}{dt} 7x y 0$ $\frac{dy}{dt} 2x 5y 0$

Unit—II

(In this unit, $p \quad \frac{z}{x}; q \quad \frac{z}{y}$)

3. (a) Form a partial differential equation by eliminating a, b, c from

$$\frac{x^2}{a^2} \quad \frac{y^2}{b^2} \quad \frac{z^2}{c^2} \quad 1$$
 5

5

(b) Solve :

$$y^2 p xy q x(z 2y)$$

(c) Find a complete integral by Charpit's method of $(p^2 q^2) y q z$. 5

22D/234 (Continued)

(3)

4.	(a)	Find the general integral of the equation	
		$(x^2 yz)p (y^2 zx)q z^2 xy$	5
	(b)	Solve : $p (qy z)^2$	6
	(c)	Solve : a(p q) z	4

* * *