2022

(February)

MATHEMATICS

(Honours)

(Advanced Calculus-I)

[GHS-52]
Marks : 45
Time : 3 hours
The figures in the margin indicate full marks for the questions

Answer three questions, choosing one from each Unit
Unit-I

1. (a) What do you mean by a partition of an interval $[a, b]$? Define the upper sum and the lower sum of a bounded function f with respect to some partition P. $\quad 1+1+1=3$
(b) Show that the beta function

$$
\beta(m, n)=\int_{0}^{1} x^{m-1}(1-x)^{n-1} d x
$$

exists if and only if m and n are both positive. Determine whether the following beta function is convergent or not :

$$
\int_{0}^{1} \frac{x}{(1-x)} d x
$$

(c) Evaluate :

$$
\begin{equation*}
\int_{0}^{\infty} \frac{\tan ^{-1} a x-\tan ^{-1} b x}{x} d x \tag{4}
\end{equation*}
$$

2. (a) Show that every continuous function is integrable.
(b) Show that

$$
\int_{0}^{\frac{\pi}{2}} \frac{x^{m}}{\sin ^{n} x} d x
$$

exists if and only if $n<m+1$.
(c) State Dirichlet's theorem. Hence prove that

$$
\int_{0}^{\infty} \frac{\sin x}{x} d x
$$

is convergent.
Unit—II
3. (a) If $f(x, y)$ is a continuous function and if f_{y} is continuous in $[a, b ; c, d]$, then show that the integral

$$
\phi(y)=\int_{a}^{b} f(x, y)
$$

is differentiable and that

$$
\phi^{\prime}(y)=\int_{a}^{b} f_{y}(x, y) d x
$$

for all $y \in[c, d]$.
(b) If $|a| \leq 1$, then show that

$$
\int_{0}^{\pi} \log (1+a \cos x) d x=\pi \log \left[\frac{1}{2}+\frac{1}{2} \sqrt{1-a^{2}}\right]
$$

(c) Establish the uniform convergence of

$$
\int_{0}^{\infty} e^{-x^{2}} \cos x d x
$$

4. (a) If a function $f(x, y)$ is continuous in $[a, b ; c, d]$, then prove that

$$
\begin{equation*}
\int_{c}^{d}\left\{\int_{a}^{b} f(x, y) d x\right\} d y=\int_{a}^{b}\left\{\int_{c}^{d} f(x, y) d y\right\} d x \tag{5}
\end{equation*}
$$

(b) If $|a|<1$, then show that

$$
\int_{0}^{\pi} \frac{\log (1+a \cos x)}{\cos x} d x=\pi \sin ^{-1} a
$$

6
(c) State Weierstrass M-test and provide an illustration of its application. $2+2=4$
UNIT—III
5. (a) Verify Green's theorem by evaluating in two ways the line integral

$$
\int\left(x^{3}+y^{2}\right) d x+\left(x^{2}+y^{3}\right) d y
$$

taken along the boundary of the polygon whose vertices are $(0,0),(1,0),(2,1)$ and (0,1).
(b) Evaluate :

$$
\iint \frac{\sqrt{a^{2} b^{2}-b^{2} x^{2}-a^{2} y^{2}}}{\sqrt{a^{2} b^{2}+b^{2} x^{2}+a^{2} y^{2}}} d x d y
$$

The field of integration being the positive quadrant of the ellipse

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

6. (a) Evaluate the repeated integral

$$
\int_{0}^{b} \int_{0}^{a} y e^{x y} d x d y
$$

(b) Change the order of integration of the double integral

$$
\int_{0}^{\infty} \int_{x}^{\infty} \frac{e^{-y}}{y} d y d x
$$

and hence find the value.
(c) Using the result that

$$
\beta(m, n)=\frac{\Gamma(m) \Gamma(n)}{\Gamma(m+n)}
$$

prove that $\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}$.

