	(c)	Calculate the magnitude of Poynting vector on the surface of the sun. Given that the power radiated by sun $3 \ 8 \ 10^{26}$ watts and the radius of the sun = $7 \ 10^{8}$ m.
	(d)	Write the FORTRAN expression corresponding to the following arithmetic expression : $\frac{(a \ b)(c \ d)}{(a \ b)(c \ d)}$
2.	(a)	Derive Clausius-Mossotti equation.
2.		Discuss the boundary conditions satisfied by \vec{E} at the interface between two homogeneous dielectrics.
	(C)	Show that $\vec{D} = {}_{0}\vec{E} = \vec{P}$, where symbols have their usual meanings.
3.	(a)	State and prove uniqueness theorem.
	(b)	Write down the Maxwell's equations for time-dependent electromagnetic fields in a material medium at rest and discuss the empirical basis of these equations.
4.	(a)	What are gauge transformations? Discuss the significance and utility of Coulomb's gauge in dealing with inhomogeneous wave equations. 2+3
221) /227	(Continue

5/H-24 (vi) (Syllabus-2015)

2022

(February)

PHYSICS

(Honours)

(Electrodynamics, Electronics-II)

[PHY-06 (T)]

Marks : 56

Time : 3 hours

The figures in the margin indicate full marks for the questions

Answer Question No. 1 which is compulsory and any four from the rest

1. (a) The data sheet of a JFET gives the following information :

> I_{DSS} 3 mA; $V_{GS(off)}$ 6V; $g_{m(\max)}$ 5000 S Determine the (i) transconductance for V_{GS} 4 V and (ii) drain current I_D at 2+2=4this point.

Using Boolean techniques, simplify the (b) following expression :

Y AB A(B C) B(B C)

22D/227

(Turn Over)

3

5

3

2

ons een 3

(2)

- ols 3
- 7 n.
 - for in uss ıs. 4
- ns? of vith 2+5=7

tinued)

(3)

- (b) Considering normal incidence of electromagnetic waves at the boundary between two dielectric media, derive the expression for transmittance and reflectance.
- 5. (a) Using a circuit diagram, explain the working of an OP-AMP as an integrator.
 - (b) What is meant by CMRR of an OP-AMP? 2
 - (c) What are FETs? Explain static and transfer characteristic of a JFET with the help of supporting diagrams. 1+4=5
- 6. (a) With the help of a neat circuit diagram, explain the working of a Hartley's oscillator. Draw an AC equivalent circuit of a Hartley's oscillator. Obtain an approximate expression for its frequency of oscillation. 3+1+3=7
 - (b) Convert $(32 \ 812)_{10}$ to binary. 2
 - (c) What is a digital comparator? Draw a1-bit digital comparator.2
- 7. (a) What are optical fibres? Mention its types and explain how light is guided in an optical fibre. 1+1+2=4

22D/**227** (Turn Over)

(4)

(b) Using 2's complement scheme, perform the following binary subtraction : $1\frac{1}{2}$

101.1101 - 101.0111

- (c) Draw a flowchart to solve the roots of a quadratic equation. Develop the algorithm for the same and hence write the code/program in FORTRAN to solve the quadratic equation. $1\frac{1}{2}+1\frac{1}{2}+2\frac{1}{2}=5\frac{1}{2}$
- **8.** (*a*) Explain the following non-executable statements with at least one example :

1½×4=6

- (i) FORMAT statement
- (ii) DIMENSION statement
- (iii) OPEN FILE statement
- (iv) COMMON statement
- (b) Explain the usage of the following control statements in FORTRAN : $1\frac{1}{2}\times2=3$
 - *(i)* GO TO statement

(ii) IF THEN, ELSE, ENDIF

(c) List the types of FORTRAN variablesand explain any one of them.2

$\star\star\star$

22D—PDF**/227**