2022

(February)

STATISTICS

(Honours)

(Linear Models, Regression and Operations

 Research, Design of Experiments)[STEH-52 (TH)]
Marks : 56

Time : 3 hours

The figures in the margin indicate full marks for the questions

Answer five questions, taking one from each Unit

Unit-I

1. (a) Stating all the assumptions, write down the Gauss-Markov linear model.
(b) Explain the following terms :
(i) Best linear unbiased estimator
(ii) Error function
(iii) Estimable parametric function
2. (a) In the case of Gauss-Markov linear model, $E(y)=A B$ and $D(y)=\sigma^{2} I$, obtain least squares estimators of the parameter vector, where $D(y)$ is the dispersion matrix and I, the identity matrix of order n.
(b) Prove the necessary and sufficient condition for a parametric function to be estimable and that for a linear function of the variable to belong to error.

UniT-II

3. What do you mean by multiple regression? Obtain the equation of the plane of regression of X_{1} on X_{2} and X_{3} of the form

$$
\frac{X_{1}}{\sigma_{1}} \omega_{11}+\frac{X_{2}}{\sigma_{2}} \omega_{12}+\frac{X_{3}}{\sigma_{3}} \omega_{13}=0
$$

where the symbols have their usual meanings. $2+9=11$
4. Write notes on the following : $3+3+5=11$
(a) Correlation ratio
(b) Correlation index
(c) Violation of usual assumptions concerning normality, colinearity and homoscedasticity in a regression model
UNIT—III
5. (a) Write notes on the following : $2+3+2=7$
(i) Factorial experiment
(ii) Complete and partial confounding
(iii) Different main effects and interaction effects in a 2^{3}-factorial experiment
(b) Write in brief about analysis of covariance mentioning the mathematical model for one-way classification with a single concomitant variable in CRD.
6. Give the complete analysis of two-way classified data with m observations per cell under fixed effect model stating clearly the assumptions used, hypothesis to be tested, test statistic to be used along with ANOVA table.

UNIT—IV

7. (a) What is a linear programming problem? 2
(b) Define the following : $3+3=6$
(i) General linear programming problem
(ii) Feasible solution, basic solution and basic feasible solution
(c) Write down all the assumptions of a linear programming problem.
8. (a) What are the conditions that need to be fulfilled to solve linear programming problems for optimization?
(b) Write a short note on slack and surplus variables.
(c) Write a note on graphical method of solution of LPP and applications of LPP.
UniT-V
9. What do you mean by transportation problem? Write the different steps to solve transportation problem by-
(a) North-West corner rule;
(b) matrix minima method or Vogel's approximation method. $5+3+3=11$
10. Write a note on assignment problem and give its mathematical formulation. Write the algorithm to solve an assignment problem by Hungarian method.
$3+3+5=11$
