1/EH-23 (i) (Syllabus-2019)

(2)

Odd Semester, 2020

(Held in March, 2021)

CHEMISTRY

(Elective/Honours)

(Chem-EH-101)

(General Chemistry—I)

Marks : 56

Time: 3 hours

The figures in the margin indicate full marks for the questions

Unit—I

(Inorganic)

(Marks : 19)

- **1.** (a) State and explain the Heisenberg uncertainty principle. What are its significances? $2+\frac{1}{2}=2\frac{1}{2}$
 - (b) For each energy level K, L, M, N, find out the maximum number of electrons in each shell.

(c)	Define nuclear binding energy.
	Calculate the binding energy in
	MeV per nucleon of oxygen atom ₈ O ¹⁶
	which has a mass of 15.994910 a.m.u.,
	mass of neutron = 1.008665 a.m.u.,
	mass of proton = 1.007277 a.m.u. and
	mass of electron = 0.0005486 a.m.u.
	(Given that 1 MeV = 931.5 a.m.u.) $\frac{1}{2}+1\frac{1}{2}=2$

- (d) Define ionisation enthalpy. The first ionisation energy of Al is lower than that of Mg. Explain. $\frac{1}{2}+1\frac{1}{2}=2$
- (e) What is the cause of periodicity in the modern periodic table?

OR

2. (a) State Hund's rule of maximum multiplicity. Write down the most stable electronic configuration for Cr and Mn, and explain for their extra stability.

1+1+1=3

2

- (b) Write down the first-order rate equation of radioactive disintegration. The half-life of radium (molar mass = 226 g mol^{-1}) is 1580 years. Show that 1 gm of radium gives 3.70×10^{10} disintegration per second. 1+2=3
- (c) Mention few important applications of radioactive isotopes in the fluid of medicine. $1\frac{1}{2}$
- (d) What are the differences between electron gain enthalpy and electronegativity?

4-21/390

(Turn Over)

1

4-21**/390**

(Continued)

2

 $1\frac{1}{2}$

3. (a) Mention in brief the basic concept of

the valence bond theory.

	(b)	Predict the shape of the following molecules using VSEPR theory and mention the hybridisation of the central atom: (i) BF ₃ , (ii) H ₂ O 1+	1=2
	(c)	Define dipole moment. Mention various factors affecting the magnitude of the dipole moment. $\frac{1}{2}+1$	∕ ₂ =2
	(d)	What is radius ratio? Using this concept, write down the possible coordination number and arrangement of BeS. The ionic radii of Be^{2+} and S^{2-} are 59 p.m. and 170 p.m. respectively.	⁄ ₂ =2
	(e)	How does n -type semiconductor differ from the p -type semiconductor?	2
		OR	
4.	(a)	Draw the molecular orbital energy-level diagram for $\rm N_2$ molecule and calculate its bond order.	2
	(b)	Define lattice energy for an ionic solid. Discuss the Born-Haber cycle for the formation of ionic crystal NaCl. 1+	2=3
	(c)	Giving reasons, state whether Pb ²⁺ or Pb ⁴⁺ will have greater polarizing power.	1
	(d)	What is a hydrogen bond? Mention the different types of hydrogen bonding in molecules with examples.	2
	(e)	Write a short note on the band theory in solids.	1½
21,	/390	(Turn O	ver)

Unit—II

(Organic)

(Marks: 19)

- **5.** (a) Draw the molecular orbital picture of methanal indicating the hybridisation, bond angles and shape of the molecule.
 - (b) Which of the following compounds is expected to have a higher boiling point and why?

o-nitrophenol or p-nitrophenol

- 2 (c) Account for the following:
 - (i) Formic acid is stronger than acetic acid.
 - (ii) Benzyl carbanion is more stable than ethyl carbanion.
- (d) Which proton $(H_a \text{ or } H_b)$ is more acidic and why? Explain on the basis of stability of the conjugate base. $1\frac{1}{2}$

Define resolution. Explain why racemic tartaric acid can be resolved but not mesotartaric acid.

4-21/390

2

2

2

OR

- **6.** (a) Discuss using suitable examples, the effect of sp^3 , sp^2 and sp hybridisations on the C—C bond length and bond energy of molecules.
 - (b) Define Lewis acids and bases. Give examples.

3

2

2

2

(c) In which of the following compounds, the C—Cl bond ionisation will give the most stable carbocation and why?

$$H_3C$$
 $CH-Cl$, H $CH-Cl$, H $CH-Cl$, H $CH-Cl$,

- (d) What are carbenes? How are they formed? $1\frac{1}{2}$
- (e) Assign E- and Z-nomenclature for the following molecules : $\frac{1}{2} + \frac{1}{2} = 1$

(i)
$$^{\mathrm{Br}}_{\mathrm{H}}$$
 $^{\mathrm{C}}=\mathrm{C}^{\mathrm{Cl}}_{\mathrm{C}_{2}\mathrm{H}_{5}}$

(ii)
$$H_3C$$
 $C=N$ OH

7. (a) "Wurtz reaction cannot be employed for the preparation of methane." Explain.

- (b) What are the limitations of the Baeyer's strain theory? $1\frac{1}{2}$
- (c) Complete the following reactions: $1\times4=4$

$$(i) \qquad \qquad O \xrightarrow{\text{Zn-Hg}}$$

(iii)
$$CH_3$$
— $C\equiv CH$ Ag^{\oplus}
Ammoniacal $AgNO_3$

(iv)
$$\xrightarrow{\text{BH}_3, \text{ THF}}$$
 $\xrightarrow{\text{H}_2\text{O}_2, \text{ NaOH, H}_2\text{O}}$

- (d) Starting from benzene, how will you synthesize—
 - (i) ethyl benzene;
 - (ii) nitrobenzene?

OR

- **8.** (a) Suggest a suitable method for the preparation of propane from a concentrated aqueous solution of sodium salt of butanoic acid. Give equations.
 - (b) How will you obtain benzaldehyde from benzene? Give reaction. $1\frac{1}{2}$

4-21**/390** (Turn Over)

4-21**/390**

(Continued)

2

2

(8)

Complete the following reactions:

(iii) +
$$O_3$$
 CCl₄ low temp.

(iv)
$$3CH_3$$
— $C = CH \xrightarrow{\text{Red hot Fe tube}} \Rightarrow$

"The presence of any activating group in a benzene ring directs the electrophile to the *ortho-* and *para-*position." Elaborate.

UNIT—III

(Physical)

(Marks : 18)

- **9.** (a) Deduce—
 - (i) Boyle's law from kinetic gas equation;
 - (ii) Charles' law from kinetic gas equation. $1\frac{1}{2}+1\frac{1}{2}=3$
 - Derive van der Waals equation of state. 4
 - Define—
 - (i) Boltzmann constant;
 - (ii) compressibility factor. 1+1=2

2

(Turn Over)

OR

- 10. (a) What is meant by coefficient of viscosity? What is the effect of density on viscosity? 2+1=3
 - (b) Mention the different types of liquid crystals.
 - Explain the following terms: $1\frac{1}{2}+1\frac{1}{2}=3$

3

2

- (i) Surface tension
- (ii) Molar refraction
- **11.** (a) Explain the following terms: 2+2=4
 - (i) Pseudo-unimolecular reactions
 - (ii) Energy of activation
 - (b) Define vacency defect and interstitial defect in crystals. $1\frac{1}{2}+1\frac{1}{2}=3$
 - State the law of constancy of interfacial angles.

OR

- **12.** (a) What is the effect of temperature on the activation energy of a reaction? 2
 - (b) What is a second-order reaction? Derive an expression for rate constant of a second-order reaction, where the reactants are same. 1+3=4
 - Calculate the Miller indices of the crystal planes having the following intercepts on the three crystallographic $1\frac{1}{2}+1\frac{1}{2}=3$ axes:

(i) $\frac{1}{2}$: 1: 2

(ii) 2:3:6