Odd Semester, 2020

(Held in March, 2021)

MATHEMATICS

(Elective/Honours)

```
(GHS-11 )
```


(Algebra-I and Calculus-I)

Marks : 75

Time : 3 hours
The figures in the margin indicate full marks for the questions

Answer five questions, taking one from each Unit
UniT-I

1. (a) Prove that for any three sets A, B, C, $(A-C) \cap(B-C)=(A \cap B)-C$.
(b) Give example of a relation which is-
(i) reflexive but neither symmetric nor transitive;
(ii) reflexive, symmetric but not transitive;
(iii) symmetric and transitive but not reflexive;
(iv) reflexive and anti-symmetric. $1 \times 4=4$
(c) If $f: x \rightarrow y$ and $g: y \rightarrow z$ are one-toone and onto mappings, then prove that $g \circ f: X \rightarrow Z$ is one-to-one and onto and $(g \circ f)^{-1}=f^{-1} \circ g^{-1}$.
(d) If $A=\{x, y, z\}$, then find the power set of A.
2. (a) If $f(x)=\frac{1+x}{1-x}$, then prove that $2 \cdot f(x) \cdot f\left(x^{2}\right)=1+\{f(x)\}^{2}$.
(b) A survey report reveals that 59% of college students like tea whereas 72% like coffee. Find the possible range of the percentage of college students who like both tea and coffee.
(c) Draw the graph of the function

$$
f(x)=\left\{\begin{aligned}
3 x+2, & x<0 \\
x+1, & x \geq 0
\end{aligned}\right.
$$

in the interval $[-2,2]$. Is this function continuous at $x=0$?
$2+2=4$
(d) Use $\varepsilon-\delta$ definition to prove that

$$
\begin{equation*}
\lim _{x \rightarrow 0} x \sin \frac{1}{x}=0 \tag{3}
\end{equation*}
$$

Unit—II
3. (a) Show that the matrix

$$
A=\left[\begin{array}{rrr}
1 & -3 & -4 \\
-1 & 3 & 4 \\
1 & -3 & -4
\end{array}\right]
$$

is nilpotent and find its index. $2+1=3$
(b) Determine if the following system of equations is consistent and if so, find the solution :

$$
\begin{aligned}
& 2 x-y+3 z=8 \\
& -x+2 y+z=4 \\
& 3 x+y-4 z=0
\end{aligned}
$$

(c) Reduce the following matrix to normal form and find its rank :

$$
A=\left[\begin{array}{rrr}
0 & 1 & -3 \\
2 & 1 & 4 \\
1 & 2 & 1
\end{array}\right]
$$

4. (a) Obtain the inverse of the matrix

$$
\left[\begin{array}{rrr}
1 & -2 & -1 \\
2 & 3 & 1 \\
0 & 5 & -2
\end{array}\right]
$$

by using elementary operations.
(b) Show that every square matrix A can be uniquely expressed as $P+i Q$ where P and Q are Hermitian matrices.
(c) If A and B be two matrices conformable to form the product $A B$, then show that $(A B)^{T}=B^{T} A^{T}$, where X^{T} represents the transpose of the matrix X.

5
Unit—III
5. (a) Find $\frac{d y}{d x}$ (any two) :

$$
4 \times 2=8
$$

(i) $(\cos x)^{y}=(\sin y)^{x}$
(ii) $x^{3}+y^{3}=3 a x y$
(iii) $y=(\sec x)^{\tan x}$
(b) Find the derivative of $y=e^{\sqrt{x}}$ from first principle.
(c) Find the slope of the curve given by $x^{2}+y^{2}+2 x-4 y-20=0$ at $(2,6)$.
(d) Evaluate the derivative of x^{7} with respect to x^{4}.

$$
2
$$

6. (a) Let $y=\tan ^{-1} x$. Show that-
(i) $\left(1+x^{2}\right) y=1$
(ii) $\left(1+x^{2}\right) y_{n+1}+2 n x y_{n}+n(n-1) y_{n-1}=0$

$$
2+4=6
$$

(b) Using L' Hospital's rule, evaluate the following (any two) :
$3 \times 2=6$

$$
\text { (i) } \operatorname{Lt}_{x \rightarrow 0}(\sin x)^{2 \tan x}
$$

(ii) $\operatorname{Lt}_{x \rightarrow 0} \frac{e^{x}-e^{-x}-2 x}{x-\sin x}$
(iii) $\underset{x \rightarrow 0}{\mathrm{Lt}} x \log x$
(c) The radius of a circle is increasing at the rate of 2 cm per second. At what rate is the area increasing when the radius is 10 cm ?
Unit-IV
7. (a) Evaluate (any one) :
(i) $\int \frac{x^{2}}{(a+b x)^{3}} d x$
(ii) $\int \sqrt{\frac{x-1}{x+1}} d x$
(b) Evaluate (any one) :
(i) $\int_{0}^{1} \frac{d x}{\left(1+x^{2}\right)^{3 / 2}}$
(ii) $\int_{0}^{\pi / 2} \frac{\sin x d x}{\sin x+\cos x}$
(c) Using the definition of definite integral as the limit of the sum, evaluate

$$
\begin{equation*}
\int_{0}^{2}\left(x^{2}+1\right) d x \tag{5}
\end{equation*}
$$

(d) Evaluate $\int_{0}^{1} \frac{d x}{\sqrt{1-x^{2}}}$, if it converges.
8. (a) Show that

$$
\int_{0}^{\pi / 2} \log \sin x d x=\frac{\pi}{2} \log \frac{1}{2}
$$

(b) Evaluate :

$$
\lim _{n \rightarrow \infty}\left\{\frac{1}{n+1}+\frac{1}{n+2}+\cdots+\frac{1}{n+n}\right\}
$$

(c) If

$$
I_{n}=\int_{0}^{\pi / 2} \sin ^{n} x d x
$$

where n is a positive integer, $n>1$; then prove that

$$
I_{n}=\frac{n-1}{n} I_{n-2}
$$

Hence evaluate $\int_{0}^{\pi / 2} \sin ^{5} x d x . \quad 3+3=6$
Unit—V
9. (a) Show that $v=\frac{A}{r}+B$ satisfies the differential equation

$$
\begin{equation*}
\frac{d^{2} v}{d r^{2}}+\frac{2}{r} \frac{d v}{d r}=0 \tag{2}
\end{equation*}
$$

(b) Solve :

$$
\frac{d y}{d x}+x \sin 2 y=x^{3} \cos ^{2} y
$$

(7)

(c) Show that the equation

$$
x d x+y d y+\frac{x d y-y d x}{x^{2}+y^{2}}=0
$$

is exact.
(d) Solve any two of the following : $3 \times 2=6$
(i) $x y^{2} d y-y^{3} d x+y^{2} d y=d x$
(ii) $y^{2}+x^{2} \frac{d y}{d x}=x y \frac{d y}{d x}$
(iii) $\frac{d y}{d x}=\frac{6 x-2 y-7}{3 x-y+4}$
10. (a) Find the differential equation of the family of curves

$$
y=e^{x}(a \cos x+b \sin x)
$$

where a and b are arbitrary constants. 2
(b) Solve completely $y=p x+\frac{a}{p} \quad$ where $p=\frac{d y}{d x}$.
(c) Find the orthogonal trajectories of the series of hyperbolas $x y=a^{2}$.
(d) Solve any two of the following : $3 \times 2=6$
(i) $\left(D^{2}-D-2\right) y=e^{2 x}$
(ii) $\left(D^{2}-8 D+15\right) y=0$
(iii) $\left(D^{3}-1\right) y=0$

