Odd Semester, 2020

(Held in March, 2021)

MATHEMATICS

(Elective/Honours)
(GHS-11)

(Algebra-I \& Calculus-I)

Marks : 75

Time : 3 hours
The figures in the margin indicate full marks for the questions

Answer five questions, taking one from each Unit
UniT-I

1. (a) For what values of x, the function $f(x)=\sqrt{(x-2)(x-3)}$ is not defined? 3
(b) Let $f(x)=\sin x, \phi(x)=\cos x$. Show that $\phi(2 x)=1-2 f^{2}(x)$.
(c) Let $A=\{x, y, z\}, B=\{y, w\}$. Determine

$$
A \cup B, A \cap B, A \times B
$$

and the power set $P(A)$.
(d) Examine if the following relations R on the set of integers are equivalence relations :
$3 \times 2=6$
(i) $x R y$ if and only if $x-y$ is an odd integer
(ii) $x R y$ if and only if $x \leq y$
2. (a) Let

$$
\begin{aligned}
f(x) & =\frac{x-|x|}{x} & & x \neq 0 \\
& =0 & & x=0
\end{aligned}
$$

Examine if $f(x)$ is continuous at $x=0$.
(b) Establish the following limit using definitions :

$$
\lim _{x \rightarrow 3} \frac{1}{x}=\frac{1}{3}
$$

(c) If $f(x)$ and $g(x)$ are continuous at $x=a$, prove that $f(x)+g(x)$ is also continuous at a.
(d) Let

$$
\begin{aligned}
f(x) & =4 x+3, & \text { when } x \neq 4 \\
& =10, & \text { when } x=4
\end{aligned}
$$

Obtain $\lim _{x \rightarrow 4} f(x)$.
Unit-II
3. (a) Let $f: X \rightarrow Y$ and $A \subseteq Y, B \subseteq Y$. Show that $f^{-1}(A \cap B)=f^{-1}(A) \cap f^{-1}(B)$.
(b) If A and B are symmetric matrices of same order, show that $A B$ is symmetric if and only if $A B=B A$.
(c) If A is an $n \times n$ matrix, prove that

$$
\begin{equation*}
|\operatorname{adj} A|=|A|^{n-1} \tag{3}
\end{equation*}
$$

(d) Using elementary row operations, compute the inverse of the matrix

$$
\left[\begin{array}{lll}
3 & -3 & 4 \\
2 & -3 & 4 \\
0 & -1 & 1
\end{array}\right]
$$

4. (a) If A is an idempotent matrix, show that $I-A$ is also idempotent.
(b) Reduce the matrix

$$
\left[\begin{array}{cccc}
2 & -1 & 3 & 4 \\
0 & 2 & 4 & 1 \\
2 & 3 & 7 & 5 \\
2 & 5 & 11 & 6
\end{array}\right]
$$

to the normal form. Hence find its rank.
(c) Examine if the following system of equations is consistent. If so, solve the system :

$$
\begin{aligned}
x+y+z & =9 \\
2 x+5 y+7 z & =52 \\
2 x+y-z & =0
\end{aligned}
$$

Unit—III
5. (a) Define derivative of a function at an interior point of its domain.
(b) A function $f(x)$ is defined as

$$
\begin{array}{rlrl}
f(x) & =0 \quad, & 0<x<1 \\
& =2-x, & & 1 \leq x \leq 2
\end{array}
$$

Show that $f^{\prime}(1)$ does not exist.
(c) If

$$
y=\sqrt{\sin x+\sqrt{\sin x+\sqrt{\sin x+\sqrt{\cdots}}}}
$$

prove that $\frac{d y}{d x}=\frac{\cos x}{2 y-1}$.
(d) Find $\frac{d y}{d x}$, if

$$
\begin{equation*}
y=\log \left(x+\sqrt{x^{2}-a^{2}}\right)+\sec ^{-1}\left(\frac{x}{a}\right) \tag{3}
\end{equation*}
$$

(e) Differentiate $\sin x$ with respect to x^{2}.
6. (a) If the area of a circle increases at a uniform rate, prove that the rate of the increase of the perimeter varies inversely as the radius.
(b) If $y=x^{n-1} \log x$, show that

$$
\begin{equation*}
y_{n}=\frac{(n-1)!}{x} \tag{4}
\end{equation*}
$$

(c) If $y=e^{1 / x}$, find y_{3}. 3
(d) Evaluate (any two) : $21 / 2 \times 2=5$
(i) $\operatorname{Lt}_{x \rightarrow \infty}\left(\sqrt{x^{2}+2 x}-x\right)$
(ii) $\operatorname{Lt}_{x \rightarrow \frac{\pi}{2}} \frac{\tan 5 x}{\tan x}$
(iii) $\operatorname{Lt}_{x \rightarrow 0}(\cos x)^{\cot ^{2} x}$
Unit—IV
7. (a) Show that

$$
\begin{equation*}
\int \frac{x d x}{x^{4}-x^{2}-2}=\frac{1}{6} \log \left|\frac{x^{2}-2}{x^{2}+1}\right|+c \tag{3}
\end{equation*}
$$

(b) Obtain a reduction formula for

$$
\int_{0}^{\pi / 2} \sin ^{m} x \cos ^{n} x d x
$$

m, n being positive integers greater than 1.
(c) Evaluate :

$$
\int_{0}^{\pi / 2} \frac{\sin x d x}{\sin x+\cos x}
$$

(d) Find the value of the improper integral

$$
\int_{0}^{3} \frac{d x}{\sqrt{9-x^{2}}}
$$

if it converges.
8. (a) Evaluate :

$$
\lim _{n \rightarrow \infty}\left[\frac{1}{n+m}+\frac{1}{n+2 m}+\cdots+\frac{1}{n+n m}\right]
$$

(b) Using properties of definite integral, show that

$$
\int_{0}^{\pi / 4} \log (1+\tan \theta) d \theta=\frac{\pi}{8} \log 2
$$

(c) Show that

$$
\int_{a}^{b} \phi(x) d x=\int_{0}^{b-a} \phi(x+a) d x
$$

(d) Express the following integral as the limit of a sum and evaluate it :

$$
\begin{equation*}
\int_{0}^{1} x^{3} d x \tag{5}
\end{equation*}
$$

(7)

UniT-V

9. (a) Eleminate a and b from the relation

$$
x y=a e^{x}+b e^{-x}
$$

(b) Solve (any three) :
(i) $e^{x-y} d x+e^{y-x} d y=0$
(ii) $\left(x^{2}+y^{2}\right) d y=x y d x$
(iii) $x \frac{d y}{d x}+y=y^{2} \log x$
(iv) $\frac{d y}{d x}+x y=x$
(c) Find the orthogonal trajectories of $y^{2}=4 a x$.
10. (a) Solve (any two) :
$4 \times 2=8$
(i) $y=p x+\frac{a}{p}$
(ii) $p^{2}-2 x p+1=0$
(iii) $p^{2}+2 x p-3 x^{2}=0$

Here p stands for $\frac{d y}{d x}$

