1/EH-24 (i) (Syllabus-2020)

Odd Semester, 2020
(Held in March, 2021)

PHYSICS

(Elective/Honours)
[Phy-01(T)]

(Mathematical Physics-I, Mechanics, Waves and Acoustics)

Marks : 75

Time : 3 hours

The figures in the margin indicate full marks for the questions

Answer any ten questions

1. (a) State Gauss' divergence theorem and Stokes' theorem and explain their significance. $\quad 21 / 2+21 / 2=5$
(b) Calculate the work done in moving a body along a vector $\vec{r}=3 \hat{i}-6 \hat{j}+3 \hat{k}$ through 1 m if the force applied is given by $\vec{F}=2 \hat{i}-\hat{j}+\hat{k}$. (Units of force and displacement are in SI.)
2. (a) Solve :

$$
\frac{d y}{d x}+y \sec x=\tan x
$$

(b) Find the solution of the following equation :

$$
\frac{d^{2} y}{d x^{2}}+4 \frac{d y}{d x}+5 y=0
$$

3. Derive the expressions for tangential and normal components of acceleration of a particle moving along a curve. What is the magnitude and direction of acceleration when the particle moves in a circular path with a uniform velocity?
4. (a) What are geosynchronous satellites? Obtain the expression for velocity of a satellite in circular orbit at a height H above the surface of the earth. $1+3$
(b) Show that the central forces are conservative in nature.
5. (a) Distinguish between elastic and inelastic collisions. Obtain the expression for loss of kinetic energy in an inelastic collision in the laboratory system in one dimension. $2+4=6$
(b) Two particles of masses 3 g and 5 g have position vectors $(2 \hat{i}+\hat{j}-\hat{k})$ and $(\hat{i}+2 \hat{j}+3 \hat{k})$ respectively (in cm). Calculate the position vector of the centre of mass.
6. State the theorems of parallel axës and perpendicular axes related to moment of inertia. Obtain an expression for the moment of inertia of a thin spherical shell rotating about any of its diameter. $3+41 / 2=71 / 2$
7. (a) State Hooke's law. Deduce the relation

$$
\frac{3}{\eta}+\frac{1}{K}=\frac{9}{Y}
$$

where the symbols have usual significance.
$1 / 2+51 / 2=6$
(b) The Young's modulus and Poisson's ratio of a material are $7.25 \times 10^{10} \mathrm{~N} / \mathrm{m}^{2}$ and 0.39 respectively. Calculate its Bulk modulus.
8. State and prove Bernoulli's theorem. $11 / 2+6=7 \frac{1}{2}$
9. What is surface tension? Derive the expression for the height to which a liquid may rise in a capillary tube. $\quad 1 \frac{1}{2}+6=71 / 2$
10. Two mutually perpendicular simple harmonic vibrations of same frequency but different amplitude with constant phase difference ϕ are acting simultaneously on a particle. Show that the resultant motion is in general elliptic. What would be the nature of the resultant figure if the phase difference is $\pi / 2$ and the two amplitudes are equal?

$$
5^{1 / 2}+2=7 \frac{1}{2}
$$

11. Write down the equation of damped simple harmonic motion and solve it for critical damping. $1 \frac{112}{2}+6=71 / 2$
12. What is progressive wave? Show that the kinetic energy and potential energy densities in the plane progressive wave are equal.

$$
11 / 2+3+3=71 / 2
$$

13. (a) Deduce an expression for the speed of a transverse wave in a stretched string. $31 / 2$
(b) Explain how constructive interference and destructive interference of sound wave occur.
14. What are ultrasonic waves? Give a detailed description of any method for generating ultrasonic wave.

$$
11 / 2+6=7^{11 / 2}
$$

15. What are the requirements of a good auditorium? Obtain the equation for growth of sound intensity and decay of sound intensity in an auditorium.
$3^{1 / 2}+4=71 / 2$
