Odd Semester, 2020

(Held in March, 2021)

CHEMISTRY

(Elective/Honours)

(Chem-EH-301)

(General Chemistry-III)

Marks: 56

Time : 3 hours

The figures in the margin indicate full marks for the questions

Unit—I

(Inorganic)

(Marks : 18)

- (a) Explain why the s-block elements do not exhibit variable valencies.
 - (b) Account for the facts that "Although beryllium and aluminium belong to different groups in the periodic table, they resemble each other closely".

4-21**/424**

(2)

- (c) Write down one method of preparation and one use of the following compounds : 1¹/₂×2=3
 - (i) Boric acid
 - (ii) Sodium thiosulphate

OR

- **2.** (a) What is catenation? Give reason why on going down the group the tendency for catenation decreases. 2
 - (b) Give one method of preparation and one use of $LiAlH_4$. 2
 - (c) What is inert pair effect? Give a reason why on moving down the group the lower oxidation state of group 13 elements becomes more stable.
- (a) Give a reason why the second and third row transition elements resemble each other more closely than they resemble the first row transition elements. 1¹/₂
 - (b) Write a method of preparation of potassium ferrocyanide and its reaction with copper sulphate solution.
 - (c) What is lanthanide contraction? What are the consequences of lanthanide contraction? $2\frac{1}{2}$
- 4-21**/424**

(Continued)

(3)

OR

- **4.** (a) Write one method of preparation of $K_2Cr_2O_7$. Also write the action of $K_2Cr_2O_7$ on FeSO₄ in presence of dil. H_2SO_4 .
 - (b) Explain the separation of lanthanide on the basis of ion-exchange method. 3
 - (c) What are transuranic elements?
- 5. (a) What is a chelating ligand? Write down the application of chelate formation. $2\frac{1}{2}$
 - (b) Give the IUPAC nomenclature of the following : 1/2×2=1
 (i) [Cu(NH₃)₄]SO₄
 (ii) [NH₄]₃[Cr(NCS)₆]
 - (c) Draw the geometrical isomers of $[Cr(NH_3)_4Cl_2]^+$ and name them as per IUPAC nomenclature. $2\frac{1}{2}$

OR

- **6.** (a) Write down the important postulate of Werner's theory of coordination compounds.
 - (b) Explain using valence bond theory why $[Fe(H_2O)_6]^{2+}$ ion is paramagnetic but $[Fe(CN)_6]^{4-}$ ion is low spin diamagnetic complex.
 - (c) Calculate the effective atomic number of Fe in $Fe(CO)_5$. 1

(Turn Over)

1

2

3

Unit—II

(Organic)

(Marks : 19)

- **7.** (a) Give the mechanism of acid hydrolysis of an alkyl cyanide into carboxylic acid. 2
 - (b) Arrange the following in order of increasing acidity giving reasons :

(c) Discuss the acid-catalysed tautomerisation of ethyl acetoacetate. $1\frac{1}{2}$

(ii)
$$C_4H_9Br + 2Li \xrightarrow{dry \text{ ether}} ? \frac{(1)}{(2)} \xrightarrow{H} C=0 \\ H^+/H_2O \xrightarrow{H^+/H_2O} B 1\frac{1}{2}$$

→ ?

(iii)
$$\begin{array}{c} & & \\ & & \\ & \\ CH_2 - C - OH \\ & \\ CH_2 - C - OH \\ & \\ & \\ O \end{array}$$

1

 $1\frac{1}{2}$

2

4-21**/424**

(Continued)

OR

- **8.** (a) Write two points to distinguish between resonance and tautomerism.
 - (b) Discuss the factors affecting the reactivity of carboxylic acid derivatives with nucleophilic reagents.
 - (c) Why are alkyl lithium more reactive than Grignard reagent?
 - (d) How would you synthesize—
 - *(i)* a secondary alcohol from Grignard reagent;
 - (ii) a ketone from alkyl lithium;
 - (iii) cinnamic acid from diethylmalonate?

1½×3=4½

2

2

1

- **9.** (a) Discuss with mechanism the preparation of ethylamine by Gabriel phthalimide synthesis. 3
 - (b) Predict the reagents and products of the following reactions : 1×2=2

(i)
$$(i) \xrightarrow{[A]} (i) \xrightarrow$$

- (c) How will you convert—
 - (i) aniline to chlorobenzene;
 - (*ii*) aniline to *p*-nitroaniline? $1\frac{1}{2}\times2=3$

(d) Explain the acidic nature of nitromethane. $1\frac{1}{2}$

OR

- 10. (a) Explain the following reactions with mechanism : 2×2=4
 (i) Carbylamine reaction
 - (ii) Sandmeyer reaction
 - (b) Between *n*-butylamine and propanoic acid, which one will have higher boiling point and why? $1\frac{1}{2}$
 - (c) Explain why nitration of aniline also gives *m*-nitroaniline. 1
 - (d) Identify the products/reagents in the following reactions : 1×3=3

(i)
$$(i)$$
 (i) (i)

(iii)
$$CH_3$$
— CH_2 — NO_2 $\xrightarrow{NaNO_2/HCl} A \xrightarrow{KOH} B$

4-21**/424**

(Turn Over)

4-21**/424**

(Continued)

Unit—III

(Physical)

(Marks : 19)

- **11.** (a) Derive the Clausius-Clapeyron equation applicable to vaporization equilibria between a liquid and vapour phase. $3\frac{1}{2}$
 - (b) Calculate the efficiency of a steam engine that operates between temperatures of 100 °C and 35 °C at 1 atm.
 - (c) Derive a relationship between K_P and K_C . 2
 - (d) State and explain the law of mass action.

OR

12. (a) Derive the Gibbs-Helmholtz equation. 3

- (b) The equilibrium constant K_P for the reaction $N_2 + 3H_2 \Rightarrow 2NH_3$ is 1.64×10^{-4} atm. at 400 °C. What will be the equilibrium constant at 500 °C if the heat of reaction in this temperature range is $-105185 \cdot 8J$? (Given, $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$)
- (c) Derive an expression for entropy change of an ideal gas when the temperature changes from T_1 to T_2 and volume changes from V_1 to V_2 . $2\frac{1}{2}$
- (d) State Trouton's rule. 2

(Turn Over)

2

2

(8)

13.	(a)	State Henry's law. What are its limitations?
	(b)	Derive an expression for the rate constant of a first-order reaction of the type $A \rightarrow$ products
		Show that the half-life period of a first- order rection is independent of initial concentration. $2\frac{1}{2}+1=3\frac{1}{2}$
	(C)	A solution containing 2.44 g of a solute dissolved in 75 g of water boiled at 100.413 °C. Calculate the molar mass of the solute. $(K_b \text{ for water } = 0.52 \text{ K kg mol}^{-1})$ 2 ¹ / ₂
	(d)	Whatarepseudounimolecularreactions?Explainwithexamples.2
		OR
14.	(a)	Derive a relation between the lowering of vapour pressure and osmotic pressure of a solution. 2
	(b)	Discuss the effect of catalyst on the rate of a reaction.
	(C)	In a first-order reaction, it takes a reactant 40.5 minutes to be 25% decomposed. Calculate the rate constant of the reaction. $2\frac{1}{2}$
	(d)	What is the cause of abnormal molecular weights of solutes in solutions?
		* * *

4-21**/424**

3/EH-23 (iii) (Syllabus-2015)